脑机接口基础之神经科学(更新)

2020-06-30 16:15:15 浏览数 (1)

人脑有一个独特的能力:信息处理能力。负责大脑信息处理任务的是一种叫做神经元的细胞。它们负责从其他大量神经元中获取信息、处理并将信息传递给其他神经元。它们之所以能完成这些工作,主要是由神经元的生物物理特性决定的。

神经元又称神经细胞,是神经系统最基本的结构和功能单位,也常被认为是神经系统最基本的计算单元。神经元分为细胞体和突起两部分。细胞体由细胞核、细胞膜、细胞质组成,具有联络和整合输入信息并传出信息的作用。突起有树突和轴突两种。树突短而分枝多,直接由细胞体扩张突出,形成树枝状,其作用是接受其他神经元轴突传来的冲动并传给细胞体。轴突长而分枝少,为粗细均匀的细长突起,常起于轴丘,其作用是接受外来刺激,再由细胞体传出。轴突除分出侧枝外,其末端形成树枝样的神经末梢。末梢分布于某些组织器官内,形成各种神经末梢装置。

神经元和电信号

神经元是如何产生电信号的呢?

由于神经元的细胞膜由磷脂双分子层构成,如下图:

这种细胞膜可以选择性地让一些特定类型的离子通过(离子通过的通道叫离子通道,它是一些嵌入细胞膜中的蛋白质)。神经元存在于水介质中,细胞内外都有大量的离子,比如钠离子、钙离子,氯离子、钾离子等。当细胞膜外的钠离子、氯离子和钙离子的浓度大于细胞膜内,而细胞膜内的钾离子、阴离子的浓度较大时,会导致细胞膜两边的离子浓度不平衡,使得神经元细胞存在约-60mV到-70mV的跨膜静电位差。

当神经细胞接收到其他神经细胞的神经递质(化学物质)后,会引发一系列事件的发生:钠离子快速流入细胞内,使得细胞膜电位升高,直到钾离子通道打开,促使钾离子流出细胞,使得细胞膜电位下降,这种膜电位快速上升和下降的现象称为动作电位或锋电位。动作电位或锋电位的产生过程如下图:

(Injected current:注入电流;Stimulating electrode:刺激电极;Ampllfler:

放大器;recording electrode:记录电极;Membrane potential:膜电位)

由于锋电位有固定的的波形,它快速上升至0mV以上,又快速下降回到处初值,然后在稳定的电流刺激下又上升至约-40mV的阈值处,此时细胞将再次放电。

神经元的电活动


与神经有关的电活动主要包括动作电位和突触后电位两种形式。

动作电位:是一种离散的电压尖峰,而且从细胞体的轴突起始处想轴突末端传递,然后在末端释放神经递质。

突触后电位:是神经递质结合与突触后细胞膜受体时产生的电压,其原理是神经递质引起离子通道的开放和闭合,从而导致跨细胞膜电位的梯度变化。

将电极放在活体脑组织细胞之间的空间,上述两种形式的电位都可以被记录到。从神经元群(large populations of neurons)进行的动作电位记录,叫做"多细胞"记录("multi-unit" recordings);从神经元集群(large groups of neurons)进行的突触后电位记录,叫做"局步场电位"记录("local field potential" recordings).

注:[可以通过插入脑内的微电极,分离来自单个神经元的动作电位,但通过活体细胞外记录,完全分离单个神经元的突触后电位,是不可能的,因此,活体当个神经元记录("单细胞"记录)测量的电位是动作电位,而非突触后电位。]

除少数极端情况下外,ERPs反映的是突触后电位,而非动作电位。原因如下:

当一个动作电位生成时,电流在轴突的某一点上快速进出,同样的进出也会沿着轴突出现在另一点上。依次类推,直到动作电位到达神经末端。如果两个神经元产生的动作电位沿着互相平行的轴突传递,而且两个动作电位在时间上是准确同时出现的话,则来自两个神经元的电压会相加,在其附近电极所记录的电压大约等于从一个神经元记录的动作电位的两倍。但如果一个神经元的放电比另一个稍晚一些,则对于一个给定位置,其电流方向在一个轴突是流入,而同时在另一个轴突则是流出,则两个电流相互抵消,因此在附近电极上产生的信号就会小很多。实际上神经元之间是很少能准确地在同一时间(毫秒级范围内)放电,所以不同轴突上的动作电位一般是相互抵消的。

突触后电位的累加


突触后电位不像一个动作电位那样仅能持续大约一个毫秒,其能持续几十甚至几百毫秒。而且,突触后电位主要局限于树突和细胞体之间,而不是以固定速率沿着轴突传递的,因此有了这些因素,在一定条件下,就允许突触后电位累加而非相互抵消。这样我们就有可能实现在较远的距离(头皮处)记录到这些电信号。

上图为ERPs产生原理图,如果皮层锥体细胞的顶树突释放一种兴奋性神经递质,则电流就会从细胞膜外流入细胞内,于是在顶树突区域的细胞膜外部就带负电;同时,电流会从细胞体与基树突流出,造成这个区域带正电。因此,导致的结果就是顶树突的负电与细胞体的正电形成一个微小的偶极子(dipole).简单讲,一个偶极子就是小距离隔开的一对正、负电位。

说实话单个神经元的偶极子太小了,我们是无法从远距离的头皮电极记录到它。幸运的是,在一定的条件下,来自多个神经元的偶极子是可以叠加的。这样我们就有可能在头皮测量到结果电压。

当然想要在头皮上记录到累加电压,就必须要有大量神经元的偶极子同时出现且来自单个神经元的偶极子必须在空间上按照一定排列。如果神经元的朝向是随机排列的,则一个神经元的正电就有可能相邻于另一个神经元的负电,这样就会相互抵消了。

类似地,如果一个神经元接收到兴奋性神经递质,而另一个神经元接收到抑制性神经递质,则神经元偶极子朝向会相反,也会相互抵消。如果所有的神经元都有相似的朝向,且接收同样类型的输入,则它们的偶极子会叠加。其结果就是电压可以在头皮上测量到。

如下图,折叠的皮层小片包含很多锥体细胞,当该区域受刺激时,来自各个神经元的偶极子聚会累加。

容积传导


如下图所示,来自多个神经元的累加偶极子可以等效于一个单个等效偶极子,在图中以一个箭头表示,该偶极子的位置和朝向确定了头皮表面上所记录到的正、负电位分布。当在大脑这样的传导介质里存在一个偶极子(等效偶极子),电流就会通过介质传导到达表面,这就是容积传导(volume conduction)。头皮表面任一点的电位不仅依赖于源偶极子的位置和朝向,也依赖于头各个部位的阻抗和形状。

在一个传导介质中,偶极子两极之间的电传导不是直接进行的,而是通过容积导体进行扩散的,其结果就是ERPs在脑内扩散。另外,电活动倾向于走最小阻抗的通路。而颅骨是高阻抗的,因此,ERPs在遇到颅骨时,倾向于向侧面扩散。

以上两种因素会大大模糊头皮表面的电位分布,大脑某一区域所产生的电位可以导致相距很远的另一部分头皮区域的电位变化。但是可以利用一些去模糊算法(比如估算电流或者通过电位分布来估算脑表面的实际电位分布)减少上面提到的模糊或者污染。

上述学习笔记参考于:

事件相关电位基础

An Introduction to the Event-Related Potential Technique,second edition.

erp

0 人点赞