有关贝塞尔曲线的定义以及公式已经写在了上一篇文章中,这篇文章主要介绍这个曲线的应用
通过贝塞尔公式结算得到一个路径数组,结合dotween的DoPath做曲线动画
测试代码如下:
代码语言:javascript复制using System.Collections;
using System.Collections.Generic;
using UnityEngine;
public class Vproject : MonoBehaviour
{
public Transform start;
public Transform end;
public float ef = 1;
public int vertCount = 3;
public int pointCount = 10; //曲线上点的个数
private Vector3[] linePointList;
void Start()
{
List<Vector3> newP = new List<Vector3>();
}
// Update is called once per frame
void Update()
{
}
public void OnDrawGizmos()
{
Vector3 center = (start.position end.position) / 2;
Vector3 centerProject = Vector3.Project(center, start.position - end.position);
transform.position= Vector3.MoveTowards(center, centerProject, ef);
Debug.DrawLine(center, centerProject,Color.yellow);
Debug.DrawLine(start.position,end.position,Color.red);
linePointList = BezierUtils.GetBeizerPointList(start.position, transform.position, end.position, vertCount);
for (int i = 0; i < linePointList.Length - 1; i )
{
Debug.DrawLine(linePointList[i], linePointList[i 1], Color.yellow);
}
}
}
代码语言:javascript复制using System.Collections;
using System.Collections.Generic;
using UnityEngine;
public static class BezierUtils
{
/// <summary>
/// 线性
/// </summary>
/// <param name="p0">起点</param>
/// <param name="p1">终点</param>
/// <param name="t">【0-1】</param>
/// <returns></returns>
public static Vector3 BezierPoint(Vector3 p0, Vector3 p1, float t)
{
return (1 - t) * p0 t * p1;
}
/// <summary>
/// 二阶曲线
/// </summary>
/// <param name="p0"></param>
/// <param name="p1"></param>
/// <param name="p2"></param>
/// <param name="t"></param>
/// <returns></returns>
public static Vector3 BezierPoint(Vector3 p0, Vector3 p1, Vector3 p2, float t)
{
Vector3 p0p1 = (1 - t) * p0 t * p1;
Vector3 p1p2 = (1 - t) * p1 t * p2;
Vector3 result = (1 - t) * p0p1 t * p1p2;
return result;
}
/// <summary>
/// 三阶曲线
/// </summary>
/// <param name="p0"></param>
/// <param name="p1"></param>
/// <param name="p2"></param>
/// <param name="p3"></param>
/// <param name="t"></param>
/// <returns></returns>
public static Vector3 BezierPoint(Vector3 p0, Vector3 p1, Vector3 p2, Vector3 p3, float t)
{
Vector3 result;
Vector3 p0p1 = (1 - t) * p0 t * p1;
Vector3 p1p2 = (1 - t) * p1 t * p2;
Vector3 p2p3 = (1 - t) * p2 t * p3;
Vector3 p0p1p2 = (1 - t) * p0p1 t * p1p2;
Vector3 p1p2p3 = (1 - t) * p1p2 t * p2p3;
result = (1 - t) * p0p1p2 t * p1p2p3;
return result;
}
/// <summary>
/// 多阶曲线 (可以递归 有多组线性组合)
/// </summary>
/// <param name="t"></param>
/// <param name="p"></param>
/// <returns></returns>
public static Vector3 BezierPoint(float t, List<Vector3> p)
{
if (p.Count < 2)
return p[0];
List<Vector3> newP = new List<Vector3>();
for (int i = 0; i < p.Count - 1; i )
{
Vector3 p0p1 = (1 - t) * p[i] t * p[i 1];
newP.Add(p0p1);
}
return BezierPoint(t, newP);
}
/// <summary>
/// 获取存储贝塞尔曲线点的数组(二阶)
/// </summary>
/// <param name="startPoint">起始点</param>
/// <param name="controlPoint">控制点</param>
/// <param name="endPoint">目标点</param>
/// <param name="segmentNum">采样点的数量</param>
/// <returns>存储贝塞尔曲线点的数组</returns>
public static Vector3[] GetBeizerPointList(Vector3 startPoint, Vector3 controlPoint, Vector3 endPoint, int segmentNum)
{
Vector3[] path = new Vector3[segmentNum];
for (int i = 1; i <= segmentNum; i )
{
float t = i / (float)segmentNum;
Vector3 pixel = BezierPoint(startPoint, controlPoint, endPoint, t);
path[i - 1] = pixel;
}
return path;
}
/// <summary>
/// 获取存储贝塞尔曲线点的数组(多阶)
/// </summary>
/// <param name="segmentNum">采样点的数量</param>
/// <param name="p">控制点集合</param>
/// <returns></returns>
public static Vector3[] GetBeizerPointList(int segmentNum, List<Vector3> p)
{
Vector3[] path = new Vector3[segmentNum];
for (int i = 1; i <= segmentNum; i )
{
float t = i / (float)segmentNum;
Vector3 pixel = BezierPoint(t, p);
path[i - 1] = pixel;
}
return path;
}
}