生成一个列表的几种方式的性能对比
代码语言:javascript复制# -*- coding: utf-8 -*-
from timeit import Timer
import matplotlib.pyplot as plt
# 列表常用操作性能测试
# 迭代 ' '
def test1():
l = []
for i in range(1000):
l = l [i]
# 迭代 append
def test2():
l = []
for i in range(1000):
l.append(i)
# 列表生成式
def test3():
l = [i for i in range(1000)]
# list构造函数 range
def test4():
l = list(range(1000))
t1 = Timer("test1()", "from __main__ import test1")
# print("concat %f seconds" % t1.timeit(number=1000))
t2 = Timer("test2()", "from __main__ import test2")
# print("concat %f seconds" % t2.timeit(number=1000))
t3 = Timer("test3()", "from __main__ import test3")
# print("concat %f seconds" % t3.timeit(number=1000))
t4 = Timer("test4()", "from __main__ import test4")
# print("concat %f seconds" % t4.timeit(number=1000))
result = [t1.timeit(1000), t2.timeit(1000), t3.timeit(1000), t4.timeit(1000)]
method = ["for ' '", "for append", "list comprehension", "list range"]
plt.bar(method, result, color='rgby')
# plt.legend('concat time')
# print(zip(method, result))
for x,y in zip(method, result):
plt.text(x, y, "%fs" % y)
plt.show()
list和dict的检索效率对比
代码语言:javascript复制# -*- coding: utf-8 -*-
import random
from timeit import Timer
import matplotlib.pyplot as plt
lst_result = []
d_result = []
for i in range(10000,1000001,20000):
t = Timer("random.randrange(%d) in x" % i, "from __main__ import random,x")
x = list(range(i))
lst_time = t.timeit(number=1000)
x = {j:None for j in range(i)}
d_time = t.timeit(number=1000)
lst_result.append(lst_time)
d_result.append(d_time)
print("%d,.3f,.3f" % (i, lst_time, d_time))
test = [i for i in range(10000,1000001,20000)]
plt.plot(test, lst_result, 'ro')
plt.plot(test, d_result, 'bo')
plt.legend(['List','Dictionary'])
plt.show()
del list[index]与del dict[key] 性能对比
代码语言:javascript复制average time complexity:$ O(n) vs O(1) $
# -*- coding: utf-8 -*-
import random
from timeit import Timer
import matplotlib.pyplot as plt
size = 20000
l_result = []
d_result = []
for i in range(size):
test_list = [i for i in range(size)]
list_t = Timer("del test_list[%d]" % i,"from __main__ import test_list")
list_result = list_t.timeit(number=1)
l_result.append(list_result)
test_dict = {j:None for j in range(size)}
dict_t = Timer("del test_dict[%d]" % i,"from __main__ import test_dict")
dict_result = dict_t.timeit(number=1)
d_result.append(dict_result)
# print("%d,%f,%f" % (i, list_result, dict_result))
plt.plot(range(size), l_result)
plt.plot(range(size), d_result)
plt.legend(['del list[index]', 'del dict[key]'])
plt.show()
参考
- matplotlib中文文档
- TimeComplexity
- 北大数据结构与算法公开课
- Python timeit
博客内容遵循 署名-非商业性使用-相同方式共享 4.0 国际 (CC BY-NC-SA 4.0) 协议 我的博客即将同步至腾讯云 社区,邀请大家一同入驻:https://cloud.tencent.com/developer/support-plan?invite_code=1utoln9pyvwqu