【数据分析与可视化】股票市场分析实战之历史趋势分析

2020-07-07 14:20:31 浏览数 (1)

代码语言:javascript复制
# 基本信息
import numpy as np
import pandas as pd
from pandas import Series, DataFrame

# 股票数据读取
import pandas_datareader as pdr

# 可视化
import matplotlib.pyplot as plt
import seaborn as sns
#%matplotlib inline

# time
from datetime import datetime
代码语言:javascript复制
start = datetime(2015,9,20)
# 获取阿里股票数据
alibaba = pdr.get_data_yahoo('BABA', start=start)
# 获取亚马逊数据
amazon = pdr.get_components_yahoo('AMZN')
代码语言:javascript复制
# 数据存储alibaba.to_csv('url')
# 读取本地数据
alibaba = pd.read_csv('/Users/bennyrhys/Desktop/数据分析可视化-数据集/homework/BABA.csv',index_col=0)
amazon = pd.read_csv('/Users/bennyrhys/Desktop/数据分析可视化-数据集/homework/AMZN.csv',index_col=0)
代码语言:javascript复制
alibaba.head()

Open

High

Low

Close

Adj Close

Volume

Date

2015-09-21

65.379997

66.400002

62.959999

63.900002

63.900002

22355100

2015-09-22

62.939999

63.270000

61.580002

61.900002

61.900002

14897900

2015-09-23

61.959999

62.299999

59.680000

60.000000

60.000000

22684600

2015-09-24

59.419998

60.340000

58.209999

59.919998

59.919998

20645700

2015-09-25

60.630001

60.840000

58.919998

59.240002

59.240002

17009100

代码语言:javascript复制
amazon.head()

Open

High

Low

Close

Adj Close

Volume

Date

2015-09-21

544.330017

549.780029

539.590027

548.390015

548.390015

3283300

2015-09-22

539.710022

543.549988

532.659973

538.400024

538.400024

3841700

2015-09-23

538.299988

541.210022

534.000000

536.070007

536.070007

2237600

2015-09-24

530.549988

534.559998

522.869995

533.750000

533.750000

3501000

2015-09-25

542.570007

542.799988

521.400024

524.250000

524.250000

4031000

代码语言:javascript复制
# 闭盘走势 
alibaba['Adj Close'].plot(legend=True)
代码语言:javascript复制
<matplotlib.axes._subplots.AxesSubplot at 0x1a252e4ad0>
代码语言:javascript复制
# 交易量
alibaba['Volume'].plot(legend=True)
代码语言:javascript复制
<matplotlib.axes._subplots.AxesSubplot at 0x1a216b9790>
代码语言:javascript复制
# 闭盘走势-两家公司
alibaba['Adj Close'].plot()
amazon['Adj Close'].plot()
代码语言:javascript复制
<matplotlib.axes._subplots.AxesSubplot at 0x1a26641290>
代码语言:javascript复制
# 统计每日差值
alibaba['high-low'] = alibaba['High'] - alibaba['Low']
alibaba.head()

Open

High

Low

Close

Adj Close

Volume

high-low

Date

2015-09-21

65.379997

66.400002

62.959999

63.900002

63.900002

22355100

3.440003

2015-09-22

62.939999

63.270000

61.580002

61.900002

61.900002

14897900

1.689998

2015-09-23

61.959999

62.299999

59.680000

60.000000

60.000000

22684600

2.619999

2015-09-24

59.419998

60.340000

58.209999

59.919998

59.919998

20645700

2.130001

2015-09-25

60.630001

60.840000

58.919998

59.240002

59.240002

17009100

1.920002

代码语言:javascript复制
alibaba['high-low'].plot()
代码语言:javascript复制
<matplotlib.axes._subplots.AxesSubplot at 0x1a26668a90>
代码语言:javascript复制
# 每天的改变
alibaba['daily-return'] = alibaba['Adj Close'].pct_change()
alibaba.head()

Open

High

Low

Close

Adj Close

Volume

high-low

daily-return

Date

2015-09-21

65.379997

66.400002

62.959999

63.900002

63.900002

22355100

3.440003

NaN

2015-09-22

62.939999

63.270000

61.580002

61.900002

61.900002

14897900

1.689998

-0.031299

2015-09-23

61.959999

62.299999

59.680000

60.000000

60.000000

22684600

2.619999

-0.030695

2015-09-24

59.419998

60.340000

58.209999

59.919998

59.919998

20645700

2.130001

-0.001333

2015-09-25

60.630001

60.840000

58.919998

59.240002

59.240002

17009100

1.920002

-0.011348

代码语言:javascript复制
alibaba['daily-return'].plot()
代码语言:javascript复制
<matplotlib.axes._subplots.AxesSubplot at 0x1a28c20410>
代码语言:javascript复制
# 美化图
alibaba['daily-return'].plot(figsize=(10,4),linestyle='--',marker='o')
代码语言:javascript复制
<matplotlib.axes._subplots.AxesSubplot at 0x1a29240a90>
代码语言:javascript复制
# 直方图
alibaba['daily-return'].plot(kind='hist')
代码语言:javascript复制
<matplotlib.axes._subplots.AxesSubplot at 0x1a2786f050>
代码语言:javascript复制
sns.distplot(alibaba['daily-return'].dropna(),bins=100, color='purple')
代码语言:javascript复制
<matplotlib.axes._subplots.AxesSubplot at 0x1a28bf8710>

0 人点赞