零基础学Flink:Join两个流

2020-07-10 09:58:31 浏览数 (1)

《零基础学Flink》这个系列已经做了不少篇了,接下来几章会更加贴近案例来说明一些功能,今天我们先来说说如何将两个流join起来。这次我们以实时汇率和订单流合并为最后牌价为案例,进行说明。

案例代码存放在 https://github.com/dafei1288/flink_casestudy

原理介绍

首先流和流的Join的基本原理和表之间join是一样的,但是由于窗口本身性质的原因,流和流Join还是分为以下几个类型。

下图是滚动窗口合并,每个窗口内,数据独立合并,没有重叠。

下图是滑动窗口合并,每个窗口内,数据独立合并,由于滑动窗口,有数据重叠。

下图是Session窗口合并,在会话间隙为一个窗口,窗口内数据独立计算。

下图是间隔关联合并,在时间流上下界,数据合并,有部分数据重叠。

官方文档的这几张图,还是很清晰的说明的这几个连接的情况的。另外对datastream的转换对应关系,下图还是讲述的比较清晰的。

案例

我们构建来2个数据流,一条为实时汇率,一条为订单流,两条流合并,订单价格*汇率计算出最终价格。

本次案例,我们还是先用flink sink到kafka(有兴趣的同学,可以翻阅之前的文章,有详细说明),然后再消费kafka的数据。

下面为订单流,订单包括字段

时间戳(Long) 商品大类(String) 商品细目(Integer) 货币类型(String) 价格(Integer)

代码语言:javascript复制
package dummy;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.java.utils.ParameterTool;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSink;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.SourceFunction;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer010;
import java.util.HashMap;
import java.util.Map;
import java.util.Random;
public class OrderWriter {

    public static void main(String[] args) throws Exception{
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        Map prop = new HashMap();
        prop.put("bootstrap.servers", "localhost:9092");
        prop.put("topic", "order");
        ParameterTool parameterTool = ParameterTool.fromMap(prop);
        DataStream<String> messageStream = env.addSource(new SourceFunction<String>() {
            private Random r = new Random();
            private static final long serialVersionUID = 1L;
            boolean running = true;
            @Override
            public void run(SourceContext<String> ctx) throws Exception {
                while(running) {
                    Thread.sleep(r.nextInt(1500));
                    char catlog = (char) (65   r.nextInt(5));
                    ctx.collect(String.format("%d,%s,%d,%s,%d", System.currentTimeMillis(), String.valueOf(catlog), r.nextInt(5), RateWriter.HBDM[r.nextInt(RateWriter.HBDM.length)], r.nextInt(1000)));
                }
            }
            @Override
            public void cancel() {
                running = false;
            }
        });
        DataStreamSink<String> airQualityVODataStreamSink = messageStream.addSink(new FlinkKafkaProducer010<>(parameterTool.getRequired("bootstrap.servers"),
                parameterTool.getRequired("topic"),
                new SimpleStringSchema()));
        messageStream.print();
        env.execute("write order to kafka !!!");
    }
}

下面为汇率,订单包括字段,这里为了简单,我们将汇率定义为整形了

时间戳(Long) 货币类型(String) 汇率(Integer)

汇率定义为以下几个类型

代码语言:javascript复制
{"BEF","CNY","DEM","EUR","HKD","USD","ITL"};
代码语言:javascript复制
package dummy;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.java.utils.ParameterTool;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSink;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.SourceFunction;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer010;
import java.util.HashMap;
import java.util.Map;
import java.util.Random;
public class RateWriter {
    public static final String[] HBDM = {"BEF","CNY","DEM","EUR","HKD","USD","ITL"};
    public static void main(String[] args) throws Exception{
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        Map prop = new HashMap();
        prop.put("bootstrap.servers", "localhost:9092");
        prop.put("topic", "rate");
        ParameterTool parameterTool = ParameterTool.fromMap(prop);
        DataStream<String> messageStream = env.addSource(new SourceFunction<String>() {
            private Random r = new Random();
            private static final long serialVersionUID = 1L;
            boolean running = true;
            @Override
            public void run(SourceContext<String> ctx) throws Exception {
                while(running) {
                    Thread.sleep(r.nextInt(3) * 1000);
                    ctx.collect(String.format("%d,%s,%d", System.currentTimeMillis(), HBDM[r.nextInt(HBDM.length)], r.nextInt(20)));
                }
            }
            @Override
            public void cancel() {
                running = false;
            }
        });
        DataStreamSink<String> airQualityVODataStreamSink = messageStream.addSink(new FlinkKafkaProducer010<>(parameterTool.getRequired("bootstrap.servers"),
                parameterTool.getRequired("topic"),
                new SimpleStringSchema()));
        messageStream.print();
        env.execute("write rate to kafka !!!");
    }
}

下面为合并的具体代码:

代码语言:javascript复制
package cn.flinkhub.ratedemo;
import org.apache.flink.api.common.functions.JoinFunction;
import org.apache.flink.api.common.serialization.DeserializationSchema;
import org.apache.flink.api.common.typeinfo.TypeHint;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.*;
import org.apache.flink.api.java.utils.ParameterTool;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.timestamps.AscendingTimestampExtractor;
import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer010;
import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
public class App {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        Map properties= new HashMap();
        properties.put("bootstrap.servers", "localhost:9092");
        properties.put("group.id", "test");
        properties.put("enable.auto.commit", "true");
        properties.put("auto.commit.interval.ms", "1000");
        properties.put("auto.offset.reset", "earliest");
        properties.put("session.timeout.ms", "30000");
//        properties.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
//        properties.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        properties.put("topicOrder", "order");
        properties.put("topicRate", "rate");
        ParameterTool parameterTool = ParameterTool.fromMap(properties);
        FlinkKafkaConsumer010 consumer010Rate = new FlinkKafkaConsumer010(
                parameterTool.getRequired("topicRate"), new DeserializationSchema() {
            @Override
            public TypeInformation getProducedType() {
                return TypeInformation.of(new TypeHint<Tuple3<Long,String,Integer>>(){});
                //return TypeInformation.of(new TypeHint<Tuple>(){});
            }

            @Override
            public Tuple3<Long,String,Integer> deserialize(byte[] message) throws IOException {
                String[] res = new String(message).split(",");
                Long timestamp = Long.valueOf(res[0]);
                String dm = res[1];
                Integer value = Integer.valueOf(res[2]);
                return Tuple3.of(timestamp,dm,value);
            }

            @Override
            public boolean isEndOfStream(Object nextElement) {
                return false;
            }
        }, parameterTool.getProperties());
        FlinkKafkaConsumer010 consumer010Order = new FlinkKafkaConsumer010(
                parameterTool.getRequired("topicOrder"), new DeserializationSchema() {
            @Override
            public TypeInformation getProducedType() {
                return TypeInformation.of(new TypeHint<Tuple5<Long,String,Integer,String,Integer>>(){});
            }

            @Override
            public Tuple5<Long,String,Integer,String,Integer> deserialize(byte[] message) throws IOException {
                //%d,%s,%d,%s,%d
                String[] res = new String(message).split(",");
                Long timestamp = Long.valueOf(res[0]);
                String catlog = res[1];
                Integer subcat = Integer.valueOf(res[2]);
                String dm = res[3];
                Integer value = Integer.valueOf(res[4]);
                return Tuple5.of(timestamp,catlog,subcat,dm,value);
            }

            @Override
            public boolean isEndOfStream(Object nextElement) {
                return false;
            }
        }, parameterTool.getProperties());
        env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
        env.setParallelism(1);
        DataStream<Tuple3<Long,String,Integer>> rateStream = env.addSource(consumer010Rate);
        DataStream<Tuple5<Long,String,Integer,String,Integer>> oraderStream = env.addSource(consumer010Order);
        long delay = 1000;
        DataStream<Tuple3<Long,String,Integer>> rateTimedStream = rateStream.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<Tuple3<Long,String,Integer>>(Time.milliseconds(delay)) {
            @Override
            public long extractTimestamp(Tuple3<Long, String, Integer> element) {
                return (Long)element.getField(0);
            }
        });
        DataStream<Tuple5<Long,String,Integer,String,Integer>> oraderTimedStream = oraderStream.assignTimestampsAndWatermarks(new AscendingTimestampExtractor<Tuple5<Long,String,Integer,String,Integer>>() {
            @Override
            public long extractAscendingTimestamp(Tuple5 value) {

                return (Long)value.getField(0);
            }
        });
        DataStream<Tuple9<Long,String,Integer,String,Integer,Long,String,Integer,Integer>> joinedStream = oraderTimedStream.join(rateTimedStream).where(new KeySelector<Tuple5<Long,String,Integer,String,Integer>,String>(){
                @Override
                public String getKey(Tuple5<Long,String,Integer,String,Integer> value) throws Exception {
//                System.out.println(value.getField(3).toString());
                    return value.getField(3).toString();
                }
        }).equalTo(new KeySelector<Tuple3<Long,String,Integer>,String>(){
            @Override
            public String getKey(Tuple3<Long,String,Integer> value) throws Exception {
//                System.out.println(value.getField(1).toString());
                return value.getField(1).toString();
            }
        }).window(TumblingEventTimeWindows.of(Time.seconds(10)))
                .apply(new JoinFunction<Tuple5<Long,String,Integer,String,Integer>, Tuple3<Long,String,Integer>,Tuple9<Long,String,Integer,String,Integer,Long,String,Integer,Integer>>() {
                    @Override
                    public Tuple9<Long,String,Integer,String,Integer,Long,String,Integer,Integer> join( Tuple5<Long,String,Integer,String,Integer> first, Tuple3<Long,String,Integer>second) throws Exception {
                        Integer res = (Integer)second.getField(2)*(Integer)first.getField(4);
                        return Tuple9.of(first.f0,first.f1,first.f2,first.f3,first.f4,second.f0,second.f1,second.f2,res);
                    }
                });
        joinedStream.print();
        env.execute("done!");
    }
}

首先,我们再消费kafka数据流的时候,定义个一个匿名类来规定如何消费数据,这里我们将数据切分成元组。

代码语言:javascript复制
 new DeserializationSchema() {
            @Override
            public TypeInformation getProducedType() {
                return TypeInformation.of(new TypeHint<Tuple3<Long,String,Integer>>(){});
                //return TypeInformation.of(new TypeHint<Tuple>(){});
            }

            @Override
            public Tuple3<Long,String,Integer> deserialize(byte[] message) throws IOException {
                String[] res = new String(message).split(",");
                Long timestamp = Long.valueOf(res[0]);
                String dm = res[1];
                Integer value = Integer.valueOf(res[2]);
                return Tuple3.of(timestamp,dm,value);
            }

            @Override
            public boolean isEndOfStream(Object nextElement) {
                return false;
            }
        }

然后为两个流添加事件时间。

代码语言:javascript复制
DataStream<Tuple3<Long,String,Integer>> rateTimedStream = rateStream.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<Tuple3<Long,String,Integer>>(Time.milliseconds(delay)) {
            @Override
            public long extractTimestamp(Tuple3<Long, String, Integer> element) {
                return (Long)element.getField(0);
            }
        });
        DataStream<Tuple5<Long,String,Integer,String,Integer>> oraderTimedStream = oraderStream.assignTimestampsAndWatermarks(new AscendingTimestampExtractor<Tuple5<Long,String,Integer,String,Integer>>() {
            @Override
            public long extractAscendingTimestamp(Tuple5 value) {

                return (Long)value.getField(0);
            }
        });

接下来,就是将两条流合并起来,要再where和equalTo的两个方法里,设置连接条件,然后通过window设置时间窗口,通过apply方法将join的数据最后结果拼装起来。

代码语言:javascript复制
DataStream<Tuple9<Long,String,Integer,String,Integer,Long,String,Integer,Integer>> joinedStream = oraderTimedStream.join(rateTimedStream).where(new KeySelector<Tuple5<Long,String,Integer,String,Integer>,String>(){
                @Override
                public String getKey(Tuple5<Long,String,Integer,String,Integer> value) throws Exception {
//                System.out.println(value.getField(3).toString());
                    return value.getField(3).toString();
                }
        }).equalTo(new KeySelector<Tuple3<Long,String,Integer>,String>(){
            @Override
            public String getKey(Tuple3<Long,String,Integer> value) throws Exception {
//                System.out.println(value.getField(1).toString());
                return value.getField(1).toString();
            }
        }).window(TumblingEventTimeWindows.of(Time.seconds(10)))
                .apply(new JoinFunction<Tuple5<Long,String,Integer,String,Integer>, Tuple3<Long,String,Integer>,Tuple9<Long,String,Integer,String,Integer,Long,String,Integer,Integer>>() {
                    @Override
                    public Tuple9<Long,String,Integer,String,Integer,Long,String,Integer,Integer> join( Tuple5<Long,String,Integer,String,Integer> first, Tuple3<Long,String,Integer>second) throws Exception {
                        Integer res = (Integer)second.getField(2)*(Integer)first.getField(4);
                        return Tuple9.of(first.f0,first.f1,first.f2,first.f3,first.f4,second.f0,second.f1,second.f2,res);
                    }
                });

下面来看看执行效果

生成订单流数据:

生成汇率流数据:

合并后的结果数据流

好了,今天的案例就讲解到这里,下次我计划来说一说,如何统计计算实时热门Top5

参考连接:

https://ci.apache.org/projects/flink/flink-docs-master/dev/stream/operators/joining.html

http://wuchong.me/blog/2018/11/07/use-flink-calculate-hot-items/

0 人点赞