Unity高级开发(六)-Shader开发-章鱼效果

2020-07-10 10:06:48 浏览数 (1)

效果图

章鱼图

代码语言:javascript复制
Shader "Custom/MyTest" {
     Properties
    {
        _BodyLight("Body Light",Color) = (1, 0.1, 0.5,1)
        _BodyLightting("Body Lightting",Color) = (1, 0.5, 0.1,1)
        
        _Water("Water",Color) = (0.1, 0.5, 1,1)
        _DepthWater("DepthWater",Color) = (0.1, 0.5, 0.6,1)
    }
    SubShader
    {
        Pass
        {
            CGPROGRAM
            #pragma vertex vert
            #pragma fragment frag
            
            #include "UnityCG.cginc"
            
            #define MAX_STEPS 100.
            #define VOLUME_STEPS 8
            #define MIN_DISTANCE 0.1
            #define MAX_DISTANCE 100.
            #define HIT_DISTANCE .01
             
            #define S(x,y,z) smoothstep(x,y,z)
            #define B(x,y,z,w) S(x-z, x z, w)*S(y z, y-z, w)
            #define sat(x) clamp(x,0.,1.)
            #define SIN(x) sin(x)*.5 .5
            #define mod(x,y) (x-y*floor(x/y))
            
            float4 _BodyLight;
            float4 _Water;
            
            float4 _BodyLightting;
            float4 _DepthWater;
            
            
            
            struct appdata
            {
                float4 vertex : POSITION;
                float2 uv : TEXCOORD0;
            };
 
            struct v2f
            {
                float2 uv : TEXCOORD0;
                float4 vertex : SV_POSITION;
            };
 
            v2f vert (appdata v)
            {
                v2f o;
                o.vertex = UnityObjectToClipPos(v.vertex);
                o.uv = ComputeScreenPos(o.vertex);
                return o;
            }
            
            static const float3 lf = float3(1., 0., 0.);
            static const float3 up = float3(0., 1., 0.);
            static const float3 fw = float3(0., 0., 1.);
 
            static const float pi = 3.141592653589793238;
            static const float twopi = 6.283185307179586;
 
            float3 bg;      // global background color
            float3 accent;  // color of the phosphorecence
 
            float N1(float x) { return frac(sin(x)*5346.1764); }
            float N2(float x, float y) { return N1(x   y*23414.324); }
 
            float N3(float3 p) {
                p = frac(p*0.3183099   .1);
                p *= 17.0;
                return frac(p.x*p.y*p.z*(p.x   p.y   p.z));
            }
 
            struct ray {
                float3 o;
                float3 d;
            };
 
            struct camera {
                float3 p;           // the position of the camera
                float3 forward; // the camera forward vector
                float3 left;        // the camera left vector
                float3 up;      // the camera up vector
 
                float3 center;  // the center of the screen, in world coords
                float3 i;           // where the current ray intersects the screen, in world coords
                ray ray;        // the current ray: from cam pos, through current uv projected on screen
                float3 lookAt;  // the lookat point
                float zoom;     // the zoom factor
            };
 
            struct de {
                // data type used to pass the various bits of information used to shade a de object
                float d;    // final distance to field
                float m;    // material
                float3 uv;
                float pump;
 
                float3 id;
                float3 pos;     // the world-space coordinate of the fragment
            };
 
            struct rc {
                // data type used to handle a repeated coordinate
                float3 id;  // holds the floor'ed coordinate of each cell. Used to identify the cell.
                float3 h;       // half of the size of the cell
                float3 p;       // the repeated coordinate
                            //float3 c;     // the center of the cell, world coordinates
            };
 
            rc Repeat(float3 pos, float3 size) {
                rc o;
                o.h = size*.5;
                o.id = floor(pos / size);           // used to give a unique id to each cell
                o.p = mod(pos, size) - o.h;
                //o.c = o.id*size o.h;
 
                return o;
            }
 
            camera cam;
 
 
            void CameraSetup(float2 uv, float3 position, float3 lookAt, float zoom) {
 
                cam.p = position;
                cam.lookAt = lookAt;
                cam.forward = normalize(cam.lookAt - cam.p);
                cam.left = cross(up, cam.forward);
                cam.up = cross(cam.forward, cam.left);
                cam.zoom = zoom;
 
                cam.center = cam.p   cam.forward*cam.zoom;
                cam.i = cam.center   cam.left*uv.x   cam.up*uv.y;
 
                cam.ray.o = cam.p;                      // ray origin = camera position
                cam.ray.d = normalize(cam.i - cam.p);   // ray direction is the vector from the cam pos through the point on the imaginary screen
            }
 
 
            // ============== Functions I borrowed ;)
 
            //  3 out, 1 in... DAVE HOSKINS
            float3 N31(float p) {
                float3 p3 = frac((p) * float3(.1031, .11369, .13787));
                p3  = dot(p3, p3.yzx   19.19);
                return frac(float3((p3.x   p3.y)*p3.z, (p3.x   p3.z)*p3.y, (p3.y   p3.z)*p3.x));
            }
 
            // DE functions from IQ
            float smin(float a, float b, float k)
            {
                float h = clamp(0.5   0.5*(b - a) / k, 0.0, 1.0);
                return lerp(b, a, h) - k*h*(1.0 - h);
            }
 
            float smax(float a, float b, float k)
            {
                float h = clamp(0.5   0.5*(b - a) / k, 0.0, 1.0);
                return lerp(a, b, h)   k*h*(1.0 - h);
            }
 
            float sdSphere(float3 p, float3 pos, float s) { return (length(p - pos) - s); }
 
            // From http://mercury.sexy/hg_sdf
            float2 pModPolar(inout float2 p, float repetitions, float fix) {
                float angle = twopi / repetitions;
                float a = atan2(p.y, p.x)   angle / 2.;
                float r = length(p);
                float c = floor(a / angle);
                a = mod(a, angle) - (angle / 2.)*fix;
                p = float2(cos(a), sin(a))*r;
 
                return p;
            }
 
            // -------------------------
 
 
            float Dist(float2 P, float2 P0, float2 P1) {
                //2d point-line distance
 
                float2 v = P1 - P0;
                float2 w = P - P0;
 
                float c1 = dot(w, v);
                float c2 = dot(v, v);
 
                if (c1 <= 0.)  // before P0
                    return length(P - P0);
 
                float b = c1 / c2;
                float2 Pb = P0   b*v;
                return length(P - Pb);
            }
 
            float3 ClosestPoint(float3 ro, float3 rd, float3 p) {
                // returns the closest point on ray r to point p
                return ro   max(0., dot(p - ro, rd))*rd;
            }
 
            float2 RayRayTs(float3 ro1, float3 rd1, float3 ro2, float3 rd2) {
                // returns the two t's for the closest point between two rays
                // ro rd*t1 = ro2 rd2*t2
 
                float3 dO = ro2 - ro1;
                float3 cD = cross(rd1, rd2);
                float v = dot(cD, cD);
 
                float t1 = dot(cross(dO, rd2), cD) / v;
                float t2 = dot(cross(dO, rd1), cD) / v;
                return float2(t1, t2);
            }
 
            float DistRaySegment(float3 ro, float3 rd, float3 p1, float3 p2) {
                // returns the distance from ray r to line segment p1-p2
                float3 rd2 = p2 - p1;
                float2 t = RayRayTs(ro, rd, p1, rd2);
 
                t.x = max(t.x, 0.);
                t.y = clamp(t.y, 0., length(rd2));
 
                float3 rp = ro   rd*t.x;
                float3 sp = p1   rd2*t.y;
 
                return length(rp - sp);
            }
 
            float2 sph(float3 ro, float3 rd, float3 pos, float radius) {
                // does a ray sphere intersection
                // returns a float2 with distance to both intersections
                // if both a and b are MAX_DISTANCE then there is no intersection
 
                float3 oc = pos - ro;
                float l = dot(rd, oc);
                float det = l*l - dot(oc, oc)   radius*radius;
                if (det < 0.0) return (MAX_DISTANCE);
 
                float d = sqrt(det);
                float a = l - d;
                float b = l   d;
 
                return float2(a, b);
            }
 
 
            float3 background(float3 r) {
 
                float x = atan2(r.x, r.z);      // from -pi to pi   
                float y = pi*0.5 - acos(r.y);       // from -1/2pi to 1/2pi     
 
                float3 col = bg*(1.   y);
 
                float t = _Time.y;              // add god rays
 
                float a = sin(r.x);
 
                float beam = sat(sin(10.*x   a*y*5.   t));
                beam *= sat(sin(7.*x   a*y*3.5 - t));
 
                float beam2 = sat(sin(42.*x   a*y*21. - t));
                beam2 *= sat(sin(34.*x   a*y*17.   t));
 
                beam  = beam2;
                col *= 1.   beam*.05;
 
                return col;
            }
 
 
 
 
            float remap(float a, float b, float c, float d, float t) {
                return ((t - a) / (b - a))*(d - c)   c;
            }
 
 
 
            de map(float3 p, float3 id) {
 
                float t = _Time.y*2.;
 
                float N = N3(id);
 
                de o;
                o.m = 0.;
 
                float x = (p.y   N*twopi)*1.   t;
                float r = 1.;
 
                float pump = cos(x   cos(x))   sin(2.*x)*.2   sin(4.*x)*.02;
 
                x = t   N*twopi;
                p.y -= (cos(x   cos(x))   sin(2.*x)*.2)*.6;
                p.xz *= 1.   pump*.2;
 
                float d1 = sdSphere(p, float3(0., 0., 0.), r);
                float d2 = sdSphere(p, float3(0., -.5, 0.), r);
 
                o.d = smax(d1, -d2, .1);
                o.m = 1.;
 
                if (p.y<.5) {
                    float sway = sin(t   p.y   N*twopi)*S(.5, -3., p.y)*N*.3;
                    p.x  = sway*N;  // add some sway to the tentacles
                    p.z  = sway*(1. - N);
 
                    float3 mp = p;
                    mp.xz = pModPolar(mp.xz, 6., 0.);
 
                    float d3 = length(mp.xz - float2(.2, .1)) - remap(.5, -3.5, .1, .01, mp.y);
                    if (d3<o.d) o.m = 2.;
                    d3  = (sin(mp.y*10.)   sin(mp.y*23.))*.03;
 
                    float d32 = length(mp.xz - float2(.2, .1)) - remap(.5, -3.5, .1, .04, mp.y)*.5;
                    d3 = min(d3, d32);
                    o.d = smin(o.d, d3, .5);
 
                    if (p.y<.2) {
                        float3 op = p;
                        op.xz = pModPolar(op.xz, 13., 1.);
 
                        float d4 = length(op.xz - float2(.85, .0)) - remap(.5, -3., .04, .0, op.y);
                        if (d4<o.d) o.m = 3.;
                        o.d = smin(o.d, d4, .15);
                    }
                }
                o.pump = pump;
                o.uv = p;
 
                o.d *= .8;
                return o;
            }
 
            float3 calcNormal(de o) {
                float3 eps = float3(0.01, 0.0, 0.0);
                float3 nor = float3(
                    map(o.pos   eps.xyy, o.id).d - map(o.pos - eps.xyy, o.id).d,
                    map(o.pos   eps.yxy, o.id).d - map(o.pos - eps.yxy, o.id).d,
                    map(o.pos   eps.yyx, o.id).d - map(o.pos - eps.yyx, o.id).d);
                return normalize(nor);
            }
 
            de CastRay(ray r) {
                float d = 0.;
                float dS = MAX_DISTANCE;
 
                float3 pos = float3(0., 0., 0.);
                float3 n = (0.);
                de o, s;
 
                float dC = MAX_DISTANCE;
                float3 p;
                rc q;
                float t = _Time.y;
                float3 grid = float3(6., 30., 6.);
 
                for (float i = 0.; i<MAX_STEPS; i  ) {
                    p = r.o   r.d*d;
 
                    p.y -= t;  // make the move up
                    p.x  = t;  // make cam fly forward
 
                    q = Repeat(p, grid);
 
                    float3 rC = ((2.*step(0., r.d) - 1.)*q.h - q.p) / r.d;  // ray to cell boundary
                    dC = min(min(rC.x, rC.y), rC.z)   .01;      // distance to cell just past boundary
 
                    float N = N3(q.id);
                    q.p  = (N31(N) - .5)*grid*float3(.5, .7, .5);
 
                    if (Dist(q.p.xz, r.d.xz, (0.))<1.1)
                        //if(DistRaySegment(q.p, r.d, float3(0., -6., 0.), float3(0., -3.3, 0)) <1.1) 
                        s = map(q.p, q.id);
                    else
                        s.d = dC;
                        
                    if (s.d<HIT_DISTANCE || d>MAX_DISTANCE) break;
                    d  = min(s.d, dC);  // move to distance to next cell or surface, whichever is closest
                }
 
                if (s.d<HIT_DISTANCE) {
                    o.m = s.m;
                    o.d = d;
                    o.id = q.id;
                    o.uv = s.uv;
                    o.pump = s.pump;
                    o.pos = q.p;
                }
 
                return o;
            }
 
            float VolTex(float3 uv, float3 p, float scale, float pump) {
                // uv = the surface pos
                // p = the volume shell pos
 
                p.y *= scale;
 
                float s2 = 5.*p.x / twopi;
                float id = floor(s2);
                s2 = frac(s2);
                float2 ep = float2(s2 - .5, p.y - .6);
                float ed = length(ep);
                float e = B(.35, .45, .05, ed);
 
                float s = SIN(s2*twopi*15.);
                s = s*s; s = s*s;
                s *= S(1.4, -.3, uv.y - cos(s2*twopi)*.2   .3)*S(-.6, -.3, uv.y);
 
                float t = _Time.y*5.;
                float mask = SIN(p.x*twopi*2.   t);
                s *= mask*mask*2.;
 
                return s   e*pump*2.;
            }
 
            float4 JellyTex(float3 p) {
                float3 s = float3(atan2(p.x, p.z), length(p.xz), p.y);
 
                float b = .75   sin(s.x*6.)*.25;
                b = lerp(1., b, s.y*s.y);
 
                p.x  = sin(s.z*10.)*.1;
                float b2 = cos(s.x*26.) - s.z - .7;
 
                b2 = S(.1, .6, b2);
                return (b   b2);
            }
 
            float3 render(float2 uv, ray camRay, float depth) {
                // outputs a color
 
                bg = background(cam.ray.d);
 
                float3 col = bg;
                de o = CastRay(camRay);
 
                float t = _Time.y;
                float3 L = up;
 
 
                if (o.m>0.) {
                    float3 n = calcNormal(o);
                    float lambert = sat(dot(n, L));
                    float3 R = reflect(camRay.d, n);
                    float fresnel = sat(1.   dot(camRay.d, n));
                    float trans = (1. - fresnel)*.5;
                    float3 ref = background(R);
                    float fade = 0.;
 
                    if (o.m == 1.) {    // hood color
                        float density = 0.;
                        for (float i = 0.; i<VOLUME_STEPS; i  ) {
                            float sd = sph(o.uv, camRay.d, (0.), .8   i*.015).x;
                            if (sd != MAX_DISTANCE) {
                                float2 intersect = o.uv.xz   camRay.d.xz*sd;
 
                                float3 uv = float3(atan2(intersect.x, intersect.y), length(intersect.xy), o.uv.z);
                                density  = VolTex(o.uv, uv, 1.4   i*.03, o.pump);
                            }
                        }
                        float4 volTex = float4(accent, density / VOLUME_STEPS);
 
 
                        float3 dif = JellyTex(o.uv).rgb;
                        dif *= max(.2, lambert);
 
                        col = lerp(col, volTex.rgb, volTex.a);
                        col = lerp(col, float3(dif), .25);
 
                        col  = fresnel*ref*sat(dot(up, n));
 
                        //fade
                        fade = max(fade, S(.0, 1., fresnel));
                    }
                    else if (o.m == 2.) {                       // inside tentacles
                        float3 dif = accent;
                        col = lerp(bg, dif, fresnel);
 
                        col *= lerp(.6, 1., S(0., -1.5, o.uv.y));
 
                        float prop = o.pump   .25;
                        prop *= prop*prop;
                        col  = pow(1. - fresnel, 20.)*dif*prop;
 
 
                        fade = fresnel;
                    }
                    else if (o.m == 3.) {                       // outside tentacles
                        float3 dif = accent;
                        float d = S(100., 13., o.d);
                        col = lerp(bg, dif, pow(1. - fresnel, 5.)*d);
                    }
 
                    fade = max(fade, S(0., 100., o.d));
                    col = lerp(col, bg, fade);
 
                    if (o.m == 4.)
                        col = float3(1., 0., 0.);
                }
                else
                    col = bg;
 
                return col;
            }
            
            fixed4 frag(v2f i) : SV_Target
            {
                float t = _Time.x;
 
                float2 uv = i.uv - 0.5;
                
                float2 m = float2(t*.25, SIN(t*pi)*.5   .5);
 
                accent = lerp(_BodyLight, _BodyLightting, SIN(t*15.456));
                bg = lerp(_Water, _DepthWater, SIN(t*7.345231));
 
                float turn = (.1 - m.x)*twopi;
                float s = sin(turn);
                float c = cos(turn);
                float3x3 rotX = float3x3(c, 0., s, 0., 1., 0., s, 0., -c);
                
                float camDist = -0.1;
 
                float3 lookAt = float3(0., -1., 0.);
 
                float3 camPos = mul(rotX,float3(0., -camDist*cos((m.y)*pi), camDist));
 
                CameraSetup(uv, camPos   lookAt, lookAt, 1.);
 
                float3 col = render(uv, cam.ray, 0.);
 
                col = pow(col, (lerp(1.5, 2.6, SIN(t   pi))));      // post-processing
                float d = 1. - dot(uv, uv);     // vignette
                col *= (d*d*d)   .1;
 
                return float4(col, 1.);
            }
 
            
            ENDCG
        }
    }
}

0 人点赞