监督学习方法总结

2020-07-13 16:16:03 浏览数 (1)

1. 适用问题

监督学习:学习一个模型,使它能对给定的输入预测相应的输出。包括分类、标注、回归。

  • 分类问题:从实例的 特征向量 到 类标记 的预测问题
  • 标注问题:从 观测序列 到 标记序列(或状态序列) 的预测问题。

感知机、k近邻法、朴素贝叶斯法、决策树简单的分类方法,具有模型直观、方法简单、实现容易等特点

逻辑斯谛回归、最大熵模型、支持向量机、提升方法更复杂但更有效的分类方法,往往分类准确率更高

隐马尔可夫模型、条件随机场是主要的标注方法。通常 条件随机场 的标注准确率更高

2. 模型

2.1 概率模型、非概率模型

预测模型 可以写成 条件概率分布

P(Y|X)

或 决策函数

Y=f(X)

的形式。

  • 朴素贝叶斯法、隐马尔可夫模型 是概率模型
  • 感知机、k近邻法、支持向量机、提升方法 是非概率模型
  • 决策树、逻辑斯谛回归、最大熵模型、条件随机场既可以看作是概率模型,又可以看作是非概率模型

2.2 判别方法、生成方法

直接学习 条件概率分布

P(Y|X)

或 决策函数

Y=f(X)

的方法为判别方法

  • 对应的模型是判别模型:感知机、k近邻法、决策树、逻辑斯谛回归、最大熵模型、支持向量机、提升方法、条件随机场

首先学习 联合概率分布

P(X,Y)

,从而求得 条件概率分布

P(Y|X)

的方法是生成方法

  • 对应的模型是生成模型:朴素贝叶斯法、隐马尔可夫模型

2.3 特征空间

决策树是定义在一般特征空间上的,可以含有 连续变量 或 离散变量

感知机、支持向量机、k近邻法 的特征空间是欧氏空间(一般地,希尔伯特空间)

提升方法 的模型是 弱分类器 的线性组合,弱分类器 的 特征空间 就是提升方法模型的特征空间


2.4 线性、非线性模型

感知机模型 是 线性模型 逻辑斯谛回归、最大熵模型、条件随机场对数线性模型 k近邻法、决策树、支持向量机(包含核函数)、提升方法非线性模型

3. 学习策略

在二类分类的监督学习中,支持向量机、逻辑斯谛回归&最大熵模型、提升方法 各自使用 合页损失函数、逻辑斯谛损失函数、指数损失函数,分别写为:

[1-y f(x)]_{ }
log [1 exp (-y f(x))]
exp (-y f(x))

这3种损失函数都是0-1损失函数的上界,具有相似的形状

可以认为 支持向量机、逻辑斯谛回归&最大熵模型、提升方法 使用不同的代理损失函数(surrogateloas Punotion)表示分类的损失,定义 经验风险 或 结构风险函数,实现二类分类学习任务。

学习的策略 是优化结构风险函数:

min _{f in H} frac{1}{N} sum_{i=1}^{N} Lleft(y_{i}, fleft(x_{i}right)right) lambda J(f)

第1项为 经验风险(经验损失),第2项为正则化项

L(y,f(x))

为损失函数,

J(f)

为模型的复杂度,

lambda geq 0

为系数。

  • 支持向量机 用
L_2

范数表示模型的复杂度

  • 原始的 逻辑斯谛回归 与 最大熵模型 没有正则化项,可以给它们加上
L_2

范数正则化项

  • 提升方法 没有显式的正则化项,通过早停止(early stopping)的方法达到正则化的效果

概率模型 的学习 可以形式化为 极大似然估计贝叶斯估计的 极大后验概率估计

学习的策略是 极小化对数似然损失 或 极小化正则化的对数似然损失

对数似然损失可以写成:

-log P(y|x)

极大后验概率估计时,正则化项是先验概率的负对数


决策树 学习的策略是正则化的极大似然估计,损失函数是对数似然损失,正则化项是决策树的复杂度

逻辑斯谛回归&最大熵模型、条件随机场 的学习策略既可以看成是 极大似然估计(或正则化的极大似然估计),又可以看成是 极小化逻辑斯谛损失(或正则化的逻辑斯谛损失)

朴素贝叶斯模型、隐马尔可夫模型 的非监督学习也是 极大似然估计 或 极大后验概率估计,但这时模型含有隐变量

4. 学习算法

统计学习的问题有了具体的形式以后,就变成了最优化问题

  • 朴素贝叶斯法、隐马尔可夫模型 的监督学习,最优解即极大似然估计值,可以由概率计算公式直接计算。
  • 感知机、逻辑斯谛回归 & 最大熵模型、条件随机场 的学习利用梯度下降法拟牛顿法等一般的无约束最优化问题的解法
  • 支持向量机 学习,可以解凸二次规划的对偶问题。有 序列最小最优化 算法等方法
  • 决策树 学习是基于启发式算法的典型例子。可以认为特征选择、生成、剪枝是启发式地进行正则化的极大似然估计。
  • 提升方法 利用学习的模型是加法模型、损失函数是指数损失函数的特点,启发式地从前向后逐步学习模型,以达到逼近优化目标函数的目的
  • EM算法 是一种迭代的求解含隐变量概率模型参数的方法,它的收敛性可以保证,但不能保证收敛到全局最优
  • 支持向量机、逻辑斯谛回归 & 最大熵模型、条件随机场 学习是凸优化问题全局最优解保证存在。而其他学习问题则不是凸优化问题

0 人点赞