cv2处理图片的模板

2020-07-15 16:06:53 浏览数 (1)

代码语言:javascript复制
from PIL import Image
from pytesseract import *
from fnmatch import fnmatch
from queue import Queue
import cv2
import time

import os





def clear_border(img,img_name):
  '''去除边框
  '''

  filename = './out_img/'   img_name.split('.')[0]   '-clearBorder.jpg'
  h, w = img.shape[:2]
  for y in range(0, w):
    for x in range(0, h):
      # if y ==0 or y == w -1 or y == w - 2:
      if y < 4 or y > w -4:
        img[x, y] = 255
      # if x == 0 or x == h - 1 or x == h - 2:
      if x < 4 or x > h - 4:
        img[x, y] = 255

  cv2.imwrite(filename,img)
  return img


def interference_line(img, img_name):
  '''
  干扰线降噪
  '''

  filename =  './out_img/'   img_name.split('.')[0]   '-interferenceline.jpg'
  h, w = img.shape[:2]
  # !!!opencv矩阵点是反的
  # img[1,2] 1:图片的高度,2:图片的宽度
  for y in range(1, w - 1):
    for x in range(1, h - 1):
      count = 0
      if img[x, y - 1] > 245:
        count = count   1
      if img[x, y   1] > 245:
        count = count   1
      if img[x - 1, y] > 245:
        count = count   1
      if img[x   1, y] > 245:
        count = count   1
      if count > 3:
        img[x, y] = 255
  cv2.imwrite(filename,img)
  return img

def interference_point(img,img_name, x = 0, y = 0):
    """点降噪
    9邻域框,以当前点为中心的田字框,黑点个数
    :param x:
    :param y:
    :return:
    """
    filename =  './out_img/'   img_name.split('.')[0]   '-interferencePoint.jpg'
    # todo 判断图片的长宽度下限
    cur_pixel = img[x,y]# 当前像素点的值
    height,width = img.shape[:2]

    for y in range(0, width - 1):
      for x in range(0, height - 1):
        if y == 0:  # 第一行
            if x == 0:  # 左上顶点,4邻域
                # 中心点旁边3个点
                sum = int(cur_pixel) 
                        int(img[x, y   1]) 
                        int(img[x   1, y]) 
                        int(img[x   1, y   1])
                if sum <= 2 * 245:
                  img[x, y] = 0
            elif x == height - 1:  # 右上顶点
                sum = int(cur_pixel) 
                        int(img[x, y   1]) 
                        int(img[x - 1, y]) 
                        int(img[x - 1, y   1])
                if sum <= 2 * 245:
                  img[x, y] = 0
            else:  # 最上非顶点,6邻域
                sum = int(img[x - 1, y]) 
                        int(img[x - 1, y   1]) 
                        int(cur_pixel) 
                        int(img[x, y   1]) 
                        int(img[x   1, y]) 
                        int(img[x   1, y   1])
                if sum <= 3 * 245:
                  img[x, y] = 0
        elif y == width - 1:  # 最下面一行
            if x == 0:  # 左下顶点
                # 中心点旁边3个点
                sum = int(cur_pixel) 
                        int(img[x   1, y]) 
                        int(img[x   1, y - 1]) 
                        int(img[x, y - 1])
                if sum <= 2 * 245:
                  img[x, y] = 0
            elif x == height - 1:  # 右下顶点
                sum = int(cur_pixel) 
                        int(img[x, y - 1]) 
                        int(img[x - 1, y]) 
                        int(img[x - 1, y - 1])

                if sum <= 2 * 245:
                  img[x, y] = 0
            else:  # 最下非顶点,6邻域
                sum = int(cur_pixel) 
                        int(img[x - 1, y]) 
                        int(img[x   1, y]) 
                        int(img[x, y - 1]) 
                        int(img[x - 1, y - 1]) 
                        int(img[x   1, y - 1])
                if sum <= 3 * 245:
                  img[x, y] = 0
        else:  # y不在边界
            if x == 0:  # 左边非顶点
                sum = int(img[x, y - 1]) 
                        int(cur_pixel) 
                        int(img[x, y   1]) 
                        int(img[x   1, y - 1]) 
                        int(img[x   1, y]) 
                        int(img[x   1, y   1])

                if sum <= 3 * 245:
                  img[x, y] = 0
            elif x == height - 1:  # 右边非顶点
                sum = int(img[x, y - 1]) 
                        int(cur_pixel) 
                        int(img[x, y   1]) 
                        int(img[x - 1, y - 1]) 
                        int(img[x - 1, y]) 
                        int(img[x - 1, y   1])

                if sum <= 3 * 245:
                  img[x, y] = 0
            else:  # 具备9领域条件的
                sum = int(img[x - 1, y - 1]) 
                        int(img[x - 1, y]) 
                        int(img[x - 1, y   1]) 
                        int(img[x, y - 1]) 
                        int(cur_pixel) 
                        int(img[x, y   1]) 
                        int(img[x   1, y - 1]) 
                        int(img[x   1, y]) 
                        int(img[x   1, y   1])
                if sum <= 4 * 245:
                  img[x, y] = 0
    cv2.imwrite(filename,img)
    return img

def _get_dynamic_binary_image(filedir, img_name):
  '''
  自适应阀值二值化
  '''

  filename =   './out_img/'   img_name.split('.')[0]   '-binary.jpg'
  img_name = filedir   '/'   img_name
  print('.....'   img_name)
  im = cv2.imread(img_name)
  im = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)

  th1 = cv2.adaptiveThreshold(im, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 21, 1)
  cv2.imwrite(filename,th1)
  return th1

def _get_static_binary_image(img, threshold = 140):
  '''
  手动二值化
  '''

  img = Image.open(img)
  img = img.convert('L')
  pixdata = img.load()
  w, h = img.size
  for y in range(h):
    for x in range(w):
      if pixdata[x, y] < threshold:
        pixdata[x, y] = 0
      else:
        pixdata[x, y] = 255

  return img


def cfs(im,x_fd,y_fd):
  '''用队列和集合记录遍历过的像素坐标代替单纯递归以解决cfs访问过深问题
  '''

  # print('**********')

  xaxis=[]
  yaxis=[]
  visited =set()
  q = Queue()
  q.put((x_fd, y_fd))
  visited.add((x_fd, y_fd))
  offsets=[(1, 0), (0, 1), (-1, 0), (0, -1)]#四邻域

  while not q.empty():
      x,y=q.get()

      for xoffset,yoffset in offsets:
          x_neighbor,y_neighbor = x xoffset,y yoffset

          if (x_neighbor,y_neighbor) in (visited):
              continue  # 已经访问过了

          visited.add((x_neighbor, y_neighbor))

          try:
              if im[x_neighbor, y_neighbor] == 0:
                  xaxis.append(x_neighbor)
                  yaxis.append(y_neighbor)
                  q.put((x_neighbor,y_neighbor))

          except IndexError:
              pass
  # print(xaxis)
  if (len(xaxis) == 0 | len(yaxis) == 0):
    xmax = x_fd   1
    xmin = x_fd
    ymax = y_fd   1
    ymin = y_fd

  else:
    xmax = max(xaxis)
    xmin = min(xaxis)
    ymax = max(yaxis)
    ymin = min(yaxis)
    #ymin,ymax=sort(yaxis)

  return ymax,ymin,xmax,xmin

def detectFgPix(im,xmax):
  '''搜索区块起点
  '''

  h,w = im.shape[:2]
  for y_fd in range(xmax 1,w):
      for x_fd in range(h):
          if im[x_fd,y_fd] == 0:
              return x_fd,y_fd

def CFS(im):
  '''切割字符位置
  '''

  zoneL=[]#各区块长度L列表
  zoneWB=[]#各区块的X轴[起始,终点]列表
  zoneHB=[]#各区块的Y轴[起始,终点]列表

  xmax=0#上一区块结束黑点横坐标,这里是初始化
  for i in range(10):

      try:
          x_fd,y_fd = detectFgPix(im,xmax)
          # print(y_fd,x_fd)
          xmax,xmin,ymax,ymin=cfs(im,x_fd,y_fd)
          L = xmax - xmin
          H = ymax - ymin
          zoneL.append(L)
          zoneWB.append([xmin,xmax])
          zoneHB.append([ymin,ymax])

      except TypeError:
          return zoneL,zoneWB,zoneHB

  return zoneL,zoneWB,zoneHB


def cutting_img(im,im_position,img,xoffset = 1,yoffset = 1):
  filename =  './out_img/'   img.split('.')[0]
  # 识别出的字符个数
  im_number = len(im_position[1])
  # 切割字符
  for i in range(im_number):
    im_start_X = im_position[1][i][0] - xoffset
    im_end_X = im_position[1][i][1]   xoffset
    im_start_Y = im_position[2][i][0] - yoffset
    im_end_Y = im_position[2][i][1]   yoffset
    cropped = im[im_start_Y:im_end_Y, im_start_X:im_end_X]
    cv2.imwrite(filename   '-cutting-'   str(i)   '.jpg',cropped)



def main():
  filedir = './easy_img'

  for file in os.listdir(filedir):
    if fnmatch(file, '*.png'):
      img_name = file

      # 自适应阈值二值化
      im = _get_dynamic_binary_image(filedir, img_name)

      # 去除边框
      im = clear_border(im,img_name)

      # 对图片进行干扰线降噪
      im = interference_line(im,img_name)

      # 对图片进行点降噪
      im = interference_point(im,img_name)

      # 切割的位置
      im_position = CFS(im)

      maxL = max(im_position[0])
      minL = min(im_position[0])

      # 如果有粘连字符,如果一个字符的长度过长就认为是粘连字符,并从中间进行切割
      if(maxL > minL   minL * 0.7):
        maxL_index = im_position[0].index(maxL)
        minL_index = im_position[0].index(minL)
        # 设置字符的宽度
        im_position[0][maxL_index] = maxL // 2
        im_position[0].insert(maxL_index   1, maxL // 2)
        # 设置字符X轴[起始,终点]位置
        im_position[1][maxL_index][1] = im_position[1][maxL_index][0]   maxL // 2
        im_position[1].insert(maxL_index   1, [im_position[1][maxL_index][1]   1, im_position[1][maxL_index][1]   1   maxL // 2])
        # 设置字符的Y轴[起始,终点]位置
        im_position[2].insert(maxL_index   1, im_position[2][maxL_index])

      # 切割字符,要想切得好就得配置参数,通常 1 or 2 就可以
      cutting_img(im,im_position,img_name,1,1)

      # 识别验证码
      cutting_img_num = 0
      for file in os.listdir('./out_img'):
        try:
            print(file)
            a= Image.open(f'./out_img/{file}')
            text = image_to_string(a)
            print('识别内容',text)
            print('-'*300)
        except:
            pass
if __name__ == '__main__':
  main()
cv2

0 人点赞