数据管道Dataset

2020-07-20 14:34:09 浏览数 (1)

TensorFlow的中阶API主要包括:

  • 数据管道(tf.data)
  • 特征列(tf.feature_column)
  • 激活函数(tf.nn)
  • 模型层(tf.keras.layers)
  • 损失函数(tf.keras.losses)
  • 评估函数(tf.keras.metrics)
  • 优化器(tf.keras.optimizers)
  • 回调函数(tf.keras.callbacks)

如果把模型比作一个房子,那么中阶API就是【模型之墙】。

本篇我们介绍数据管道。

如果需要训练的数据大小不大,例如不到1G,那么可以直接全部读入内存中进行训练,这样一般效率最高。

但如果需要训练的数据很大,例如超过10G,无法一次载入内存,那么通常需要在训练的过程中分批逐渐读入。

使用 tf.data API 可以构建数据输入管道,轻松处理大量的数据,不同的数据格式,以及不同的数据转换。

一,构建数据管道

可以从 Numpy array, Pandas DataFrame, Python generator, csv文件, 文本文件, 文件路径, tfrecords文件等方式构建数据管道。

其中通过Numpy array, Pandas DataFrame, 文件路径构建数据管道是最常用的方法。

通过tfrecords文件方式构建数据管道较为复杂,需要对样本构建tf.Example后压缩成字符串写到tfrecoreds文件,读取后再解析成tf.Example。

但tfrecoreds文件的优点是压缩后文件较小,便于网络传播,加载速度较快。

1,从Numpy array构建数据管道

2,从 Pandas DataFrame构建数据管道

3,从Python generator构建数据管道

4,从csv文件构建数据管道

5, 从文本文件构建数据管道

6,从文件路径构建数据管道

7,从tfrecords文件构建数据管道

二,应用数据转换

Dataset数据结构应用非常灵活,因为它本质上是一个Sequece序列,其每个元素可以是各种类型,例如可以是张量,列表,字典,也可以是Dataset。

Dataset包含了非常丰富的数据转换功能。

  • map: 将转换函数映射到数据集每一个元素。
  • flat_map: 将转换函数映射到数据集的每一个元素,并将嵌套的Dataset压平。
  • interleave: 效果类似flat_map,但可以将不同来源的数据夹在一起。
  • filter: 过滤掉某些元素。
  • zip: 将两个长度相同的Dataset横向铰合。
  • concatenate: 将两个Dataset纵向连接。
  • reduce: 执行归并操作。
  • batch : 构建批次,每次放一个批次。比原始数据增加一个维度。其逆操作为unbatch。
  • padded_batch: 构建批次,类似batch, 但可以填充到相同的形状。
  • window :构建滑动窗口,返回Dataset of Dataset.
  • shuffle: 数据顺序洗牌。
  • repeat: 重复数据若干次,不带参数时,重复无数次。
  • shard: 采样,从某个位置开始隔固定距离采样一个元素。
  • take: 采样,从开始位置取前几个元素。

三,提升管道性能

训练深度学习模型常常会非常耗时。

模型训练的耗时主要来自于两个部分,一部分来自数据准备,另一部分来自参数迭代

参数迭代过程的耗时通常依赖于GPU来提升。

而数据准备过程的耗时则可以通过构建高效的数据管道进行提升。

以下是一些构建高效数据管道的建议。

  • 1,使用 prefetch 方法让数据准备和参数迭代两个过程相互并行。
  • 2,使用 interleave 方法可以让数据读取过程多进程执行,并将不同来源数据夹在一起。
  • 3,使用 map 时设置num_parallel_calls 让数据转换过程多进行执行。
  • 4,使用 cache 方法让数据在第一个epoch后缓存到内存中,仅限于数据集不大情形。
  • 5,使用 map转换时,先batch, 然后采用向量化的转换方法对每个batch进行转换。

1,使用 prefetch 方法让数据准备和参数迭代两个过程相互并行。

2,使用 interleave 方法可以让数据读取过程多进程执行,并将不同来源数据夹在一起。

3,使用 map 时设置num_parallel_calls 让数据转换过程多进行执行。

4,使用 cache 方法让数据在第一个epoch后缓存到内存中,仅限于数据集不大情形。

5,使用 map转换时,先batch, 然后采用向量化的转换方法对每个batch进行转换。

0 人点赞