深度学习的训练过程常常非常耗时,一个模型训练几个小时是家常便饭,训练几天也是常有的事情,有时候甚至要训练几十天。
训练过程的耗时主要来自于两个部分,一部分来自数据准备,另一部分来自参数迭代。
当数据准备过程还是模型训练时间的主要瓶颈时,我们可以使用更多进程来准备数据。
当参数迭代过程成为训练时间的主要瓶颈时,我们通常的方法是应用GPU或者Google的TPU来进行加速。
详见《用GPU加速Keras模型——Colab免费GPU使用攻略》
https://zhuanlan.zhihu.com/p/68509398
本篇我们介绍使用单GPU训练模型的方法,后面两篇分别介绍使用多GPU和使用TPU训练模型的方法。
〇,GPU配置
无论是内置fit方法,还是自定义训练循环,从CPU切换成单GPU训练模型都是非常方便的,无需更改任何代码。当存在可用的GPU时,如果不特意指定device,tensorflow会自动优先选择使用GPU来创建张量和执行张量计算。
但如果是在公司或者学校实验室的服务器环境,存在多个GPU和多个使用者时,为了不让单个同学的任务占用全部GPU资源导致其他同学无法使用(tensorflow默认获取全部GPU的全部内存资源权限,但实际上只使用一个GPU的部分资源),我们通常会在开头增加以下几行代码以控制每个任务使用的GPU编号和显存大小,以便其他同学也能够同时训练模型。
在Colab笔记本中:修改->笔记本设置->硬件加速器 中选择 GPU
注:以下代码只能在Colab 上才能正确执行。
可通过以下Colab分享链接测试效果《tf_单GPU》:
https://colab.research.google.com/drive/1r5dLoeJq5z01sU72BX2M5UiNSkuxsEFe
代码语言:javascript复制%tensorflow_version 2.x
import tensorflow as tf
print(tf.__version__)
代码语言:javascript复制from tensorflow.keras import *
#打印时间分割线
@tf.function
def printbar():
ts = tf.timestamp()
today_ts = ts%(24*60*60)
hour = tf.cast(today_ts//3600 8,tf.int32)%tf.constant(24)
minite = tf.cast((today_ts600)//60,tf.int32)
second = tf.cast(tf.floor(today_ts`),tf.int32)
def timeformat(m):
if tf.strings.length(tf.strings.format("{}",m))==1:
return(tf.strings.format("0{}",m))
else:
return(tf.strings.format("{}",m))
timestring = tf.strings.join([timeformat(hour),timeformat(minite),
timeformat(second)],separator = ":")
tf.print("=========="*8,end = "")
tf.print(timestring)
增加以下几行代码控制GPU使用量
代码语言:javascript复制gpus = tf.config.list_physical_devices("GPU")
if gpus:
gpu0 = gpus[0] #如果有多个GPU,仅使用第0个GPU
tf.config.experimental.set_memory_growth(gpu0, True) #设置GPU显存用量按需使用
# 或者也可以设置GPU显存为固定使用量(例如:4G)
#tf.config.experimental.set_virtual_device_configuration(gpu0,
# [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=4096)])
tf.config.set_visible_devices([gpu0],"GPU")
比较GPU和CPU的计算速度
代码语言:javascript复制printbar()
with tf.device("/gpu:0"):
tf.random.set_seed(0)
a = tf.random.uniform((10000,100),minval = 0,maxval = 3.0)
b = tf.random.uniform((100,100000),minval = 0,maxval = 3.0)
c = a@b
tf.print(tf.reduce_sum(tf.reduce_sum(c,axis = 0),axis=0))
printbar()
代码语言:javascript复制printbar()
with tf.device("/cpu:0"):
tf.random.set_seed(0)
a = tf.random.uniform((10000,100),minval = 0,maxval = 3.0)
b = tf.random.uniform((100,100000),minval = 0,maxval = 3.0)
c = a@b
tf.print(tf.reduce_sum(tf.reduce_sum(c,axis = 0),axis=0))
printbar()
一,准备数据
代码语言:javascript复制MAX_LEN = 300
BATCH_SIZE = 32
(x_train,y_train),(x_test,y_test) = datasets.reuters.load_data()
x_train = preprocessing.sequence.pad_sequences(x_train,maxlen=MAX_LEN)
x_test = preprocessing.sequence.pad_sequences(x_test,maxlen=MAX_LEN)
MAX_WORDS = x_train.max() 1
CAT_NUM = y_train.max() 1
ds_train = tf.data.Dataset.from_tensor_slices((x_train,y_train))
.shuffle(buffer_size = 1000).batch(BATCH_SIZE)
.prefetch(tf.data.experimental.AUTOTUNE).cache()
ds_test = tf.data.Dataset.from_tensor_slices((x_test,y_test))
.shuffle(buffer_size = 1000).batch(BATCH_SIZE)
.prefetch(tf.data.experimental.AUTOTUNE).cache()
二,定义模型
代码语言:javascript复制tf.keras.backend.clear_session()
def create_model():
model = models.Sequential()
model.add(layers.Embedding(MAX_WORDS,7,input_length=MAX_LEN))
model.add(layers.Conv1D(filters = 64,kernel_size = 5,activation = "relu"))
model.add(layers.MaxPool1D(2))
model.add(layers.Conv1D(filters = 32,kernel_size = 3,activation = "relu"))
model.add(layers.MaxPool1D(2))
model.add(layers.Flatten())
model.add(layers.Dense(CAT_NUM,activation = "softmax"))
return(model)
model = create_model()
model.summary()
三,训练模型
代码语言:javascript复制optimizer = optimizers.Nadam()
loss_func = losses.SparseCategoricalCrossentropy()
train_loss = metrics.Mean(name='train_loss')
train_metric = metrics.SparseCategoricalAccuracy(name='train_accuracy')
valid_loss = metrics.Mean(name='valid_loss')
valid_metric = metrics.SparseCategoricalAccuracy(name='valid_accuracy')
@tf.function
def train_step(model, features, labels):
with tf.GradientTape() as tape:
predictions = model(features,training = True)
loss = loss_func(labels, predictions)
gradients = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
train_loss.update_state(loss)
train_metric.update_state(labels, predictions)
@tf.function
def valid_step(model, features, labels):
predictions = model(features)
batch_loss = loss_func(labels, predictions)
valid_loss.update_state(batch_loss)
valid_metric.update_state(labels, predictions)
def train_model(model,ds_train,ds_valid,epochs):
for epoch in tf.range(1,epochs 1):
for features, labels in ds_train:
train_step(model,features,labels)
for features, labels in ds_valid:
valid_step(model,features,labels)
logs = 'Epoch={},Loss:{},Accuracy:{},Valid Loss:{},Valid Accuracy:{}'
if epoch%1 ==0:
printbar()
tf.print(tf.strings.format(logs,
(epoch,train_loss.result(),train_metric.result(),valid_loss.result(),valid_metric.result())))
tf.print("")
train_loss.reset_states()
valid_loss.reset_states()
train_metric.reset_states()
valid_metric.reset_states()
train_model(model,ds_train,ds_test,10)