本文代码来源于东北电力大学和长春理工大学研究团队的研究成果《A novel approach of decoding {EEG} four-class motor imagery tasks via scout ESI and CNN》。
本文中的方法是EEG源成像(ESI) Morlet小波联合时频分析(JTFA) 卷积神经网络(CNN)。原始数据已使用Matlab ToolkitBrainstorm处理。在ESI JTFA过程处理之后,使用CNN对EEG数据进行分类。
EEG Motor Imagery Signals (Tasks) Classification
via Convolutional Neural Networks (CNN)
代码地址:
https://github.com/SuperBruceJia/EEG-Motor-Imagery-Classification-CNNs-TensorFlow
安装使用
- Python file: PhysioNet_MI_Dataset/MIND_Get_EDF.py
--- download all the EEG Motor Movement/Imagery Dataset .edf files from here!
(Under Any Python Environment) $ python MIND_Get_EDF.py
- Python file: Read_Raw_Data_Save_Into_Matlab_Files.py
--- Read the edf Raw data of different channels and save them into matlab .m files
--- At this stage, the Python file must be processed under a Python 2 environment (I recommend to use Python 2.7 version).
(Under Python 2.7 Environment) $ python Read_Raw_Data_Save_Into_Matlab_Files.py
- Matlab file: Saved_Matlab_Data/Preprocessing_Raw_Data.m --- Pre-process the dataset (Data Normalization mainly) and save matlab .m files into Excel .xlsx Files
- Python file: MI_Proposed_CNNs_Architecture.py
--- the proposed CNNs architecture
--- based on TensorFlow 1.12.0 with CUDA 9.0 or TensorFlow 1.13.1 with CUDA 10.0
--- The trained results are saved in the Tensorboard
--- Open the Tensorboard and save the results into Excel .csv files
--- Draw the graphs using Matlab or Origin
(Under Python 3.6 Environment) $ python MI_Proposed_CNNs_Architecture.py
CNN网络架构代码:MI_Proposed_CNNs_Architecture
文章来源于网络,仅用于学术分享,不用于商业行为,若有侵权及疑问,请后台留言!