Logistic回归简介
Logistic模型
Logistic模型
Logistic模型图解
损失函数(交叉熵损失)
交叉熵
softmax多分类
softmax
Tensorflow Logistic回归
导入 mnist数据集
代码语言:javascript复制import tensorflow as tf
# Import MINST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("./data/", one_hot=True)
代码语言:javascript复制Extracting ./data/train-images-idx3-ubyte.gz
Extracting ./data/train-labels-idx1-ubyte.gz
Extracting ./data/t10k-images-idx3-ubyte.gz
Extracting ./data/t10k-labels-idx1-ubyte.gz
设置参数
代码语言:javascript复制# Parameters
learning_rate = 0.01
training_epochs = 25
batch_size = 100
display_step = 1
构建模型
代码语言:javascript复制# tf Graph Input
x = tf.placeholder(tf.float32, [None, 784]) # mnist data image of shape 28*28=784
y = tf.placeholder(tf.float32, [None, 10]) # 0-9 digits recognition => 10 classes
# Set model weights
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
# Construct model
pred = tf.nn.softmax(tf.matmul(x, W) b) # Softmax
定义损失函数(交叉熵)
代码语言:javascript复制# Minimize error using cross entropy
cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(pred), reduction_indices=1))
设置优化器(SGD)
代码语言:javascript复制# Gradient Descent
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
训练
代码语言:javascript复制# Initialize the variables (i.e. assign their default value)
init = tf.global_variables_initializer()
# Start training
with tf.Session() as sess:
sess.run(init)
# Training cycle
for epoch in range(training_epochs):
avg_cost = 0.
total_batch = int(mnist.train.num_examples/batch_size)
# Loop over all batches
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
# Fit training using batch data
_, c = sess.run([optimizer, cost], feed_dict={x: batch_xs,
y: batch_ys})
# Compute average loss
avg_cost = c / total_batch
# Display logs per epoch step
if (epoch 1) % display_step == 0:
print ("Epoch:", 'd' % (epoch 1), "cost=", "{:.9f}".format(avg_cost))
print ("Optimization Finished!")
# Test model
correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
# Calculate accuracy for 3000 examples
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print ("Accuracy:", accuracy.eval({x: mnist.test.images[:3000], y: mnist.test.labels[:3000]}))
代码语言:javascript复制Epoch: 0001 cost= 1.184004518
Epoch: 0002 cost= 0.665706925
Epoch: 0003 cost= 0.552722147
Epoch: 0004 cost= 0.498915088
Epoch: 0005 cost= 0.465621155
Epoch: 0006 cost= 0.442525349
Epoch: 0007 cost= 0.425387941
Epoch: 0008 cost= 0.412269829
Epoch: 0009 cost= 0.401506593
Epoch: 0010 cost= 0.392485674
Epoch: 0011 cost= 0.384779438
Epoch: 0012 cost= 0.378020378
Epoch: 0013 cost= 0.372379096
Epoch: 0014 cost= 0.367407406
Epoch: 0015 cost= 0.362790742
Epoch: 0016 cost= 0.358502308
Epoch: 0017 cost= 0.354814395
Epoch: 0018 cost= 0.351517630
Epoch: 0019 cost= 0.348201127
Epoch: 0020 cost= 0.345595738
Epoch: 0021 cost= 0.342694492
Epoch: 0022 cost= 0.340168105
Epoch: 0023 cost= 0.338062184
Epoch: 0024 cost= 0.335568684
Epoch: 0025 cost= 0.333836752
Optimization Finished!
Accuracy: 0.8886667
参考
李宏毅机器学习教程
[TensorFlow-Examples]https://github.com/aymericdamien/TensorFlow-Examples