Tensorflow Eager API Logistic回归
代码语言:javascript复制from __future__ import absolute_import, division, print_function
import tensorflow as tf
import tensorflow.contrib.eager as tfe
设置 Eager API
代码语言:javascript复制# Set Eager API
tfe.enable_eager_execution()
导入数据
代码语言:javascript复制# Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("./data/", one_hot=False)
代码语言:javascript复制Extracting ./data/train-images-idx3-ubyte.gz
Extracting ./data/train-labels-idx1-ubyte.gz
Extracting ./data/t10k-images-idx3-ubyte.gz
Extracting ./data/t10k-labels-idx1-ubyte.gz
设置变量
代码语言:javascript复制# Parameters
learning_rate = 0.1
batch_size = 128
num_steps = 1000
display_step = 100
调用 Dataset API 读取数据[3]
Dataset API是TensorFlow 1.3版本中引入的一个新的模块,主要服务于数据读取,构建输入数据的pipeline。
如果想要用到Eager模式,就必须要使用Dataset API来读取数据。
之前有用 placeholder 读取数据,tf.data.Dataset.from_tensor_slices 是另一种方式,其主要作用是切分传入 Tensor 的第一个维度,生成相应的 dataset。以下面的例子为例,是对 mnist.train.images 按batch_size 进行切分。
在Eager模式中,创建Iterator的方式是通过 tfe.Iterator(dataset) 的形式直接创建Iterator并迭代。迭代时可以直接取出值,不需要使用sess.run()。
代码语言:javascript复制# Iterator for the dataset
dataset = tf.data.Dataset.from_tensor_slices(
(mnist.train.images, mnist.train.labels)).batch(batch_size)
dataset_iter = tfe.Iterator(dataset)
定义模型(公式 损失函数 准确率计算)
代码语言:javascript复制# Variables
W = tfe.Variable(tf.zeros([784, 10]), name='weights')
b = tfe.Variable(tf.zeros([10]), name='bias')
# Logistic regression (Wx b)
def logistic_regression(inputs):
return tf.matmul(inputs, W) b
# Cross-Entropy loss function
def loss_fn(inference_fn, inputs, labels):
# Using sparse_softmax cross entropy
return tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=inference_fn(inputs), labels=labels))
# Calculate accuracy
def accuracy_fn(inference_fn, inputs, labels):
prediction = tf.nn.softmax(inference_fn(inputs))
correct_pred = tf.equal(tf.argmax(prediction, 1), labels)
return tf.reduce_mean(tf.cast(correct_pred, tf.float32))
补充: tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None):[4]
- 第一个参数logits:就是神经网络最后一层的输出,如果有batch的话,它的大小就是[batchsize,num_classes],单样本的话,大小就是num_classes
- 第二个参数labels:实际的标签,大小同上
执行下面两步操作:
返回值是一个向量,对向量求 tf.reduce_mean,得到loss。
设置优化器(SGD)
代码语言:javascript复制# SGD Optimizer
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
# Compute gradients
grad = tfe.implicit_gradients(loss_fn)
训练
代码语言:javascript复制# Training
average_loss = 0.
average_acc = 0.
for step in range(num_steps):
# Iterate through the dataset
try:
d = dataset_iter.next()
except StopIteration: # try...except,except用于处理异常
# Refill queue
dataset_iter = tfe.Iterator(dataset)
d = dataset_iter.next()
# Images
x_batch = d[0]
# Labels
y_batch = tf.cast(d[1], dtype=tf.int64)
# Compute the batch loss
batch_loss = loss_fn(logistic_regression, x_batch, y_batch)
average_loss = batch_loss
# Compute the batch accuracy
batch_accuracy = accuracy_fn(logistic_regression, x_batch, y_batch)
average_acc = batch_accuracy
if step == 0:
# Display the initial cost, before optimizing
print("Initial loss= {:.9f}".format(average_loss))
# Update the variables following gradients info
optimizer.apply_gradients(grad(logistic_regression, x_batch, y_batch))
# Display info
if (step 1) % display_step == 0 or step == 0:
if step > 0:
average_loss /= display_step
average_acc /= display_step
print("Step:", 'd' % (step 1), " loss=",
"{:.9f}".format(average_loss), " accuracy=",
"{:.4f}".format(average_acc))
average_loss = 0.
average_acc = 0.
代码语言:javascript复制Initial loss= 2.302585363
Step: 0001 loss= 2.302585363 accuracy= 0.1172
Step: 0100 loss= 0.952338576 accuracy= 0.7955
Step: 0200 loss= 0.535867393 accuracy= 0.8712
Step: 0300 loss= 0.485415280 accuracy= 0.8757
Step: 0400 loss= 0.433947176 accuracy= 0.8843
Step: 0500 loss= 0.381990731 accuracy= 0.8971
Step: 0600 loss= 0.394154936 accuracy= 0.8947
Step: 0700 loss= 0.391497582 accuracy= 0.8905
Step: 0800 loss= 0.386373132 accuracy= 0.8945
Step: 0900 loss= 0.332039326 accuracy= 0.9096
Step: 1000 loss= 0.358993709 accuracy= 0.9002
测试
代码语言:javascript复制# Evaluate model on the test image set
testX = mnist.test.images
testY = mnist.test.labels
test_acc = accuracy_fn(logistic_regression, testX, testY)
print("Testset Accuracy: {:.4f}".format(test_acc))
代码语言:javascript复制Testset Accuracy: 0.9083
参考
[1] [tensorflow reduction_indices理解]https://www.cnblogs.com/likethanlove/p/6547405.html
[2] [tf.argmax()以及axis解析]https://blog.csdn.net/qq575379110/article/details/70538051
[3] [TensorFlow全新的数据读取方式:Dataset API入门教程]https://blog.csdn.net/kwame211/article/details/78579035
[4] [【TensorFlow】tf.nn.softmax_cross_entropy_with_logits的用法]https://blog.csdn.net/mao_xiao_feng/article/details/53382790