一看就懂的Tensorflow实战(Logistic回归模型Eager API)

2020-07-29 11:20:04 浏览数 (1)

Tensorflow Eager API Logistic回归

代码语言:javascript复制
from __future__ import absolute_import, division, print_function

import tensorflow as tf
import tensorflow.contrib.eager as tfe
设置 Eager API
代码语言:javascript复制
# Set Eager API
tfe.enable_eager_execution()
导入数据
代码语言:javascript复制
# Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("./data/", one_hot=False)

代码语言:javascript复制
Extracting ./data/train-images-idx3-ubyte.gz
Extracting ./data/train-labels-idx1-ubyte.gz
Extracting ./data/t10k-images-idx3-ubyte.gz
Extracting ./data/t10k-labels-idx1-ubyte.gz
设置变量
代码语言:javascript复制
# Parameters
learning_rate = 0.1
batch_size = 128
num_steps = 1000
display_step = 100
调用 Dataset API 读取数据[3]

Dataset API是TensorFlow 1.3版本中引入的一个新的模块,主要服务于数据读取,构建输入数据的pipeline。

如果想要用到Eager模式,就必须要使用Dataset API来读取数据。

之前有用 placeholder 读取数据,tf.data.Dataset.from_tensor_slices 是另一种方式,其主要作用是切分传入 Tensor 的第一个维度,生成相应的 dataset。以下面的例子为例,是对 mnist.train.images 按batch_size 进行切分。

在Eager模式中,创建Iterator的方式是通过 tfe.Iterator(dataset) 的形式直接创建Iterator并迭代。迭代时可以直接取出值,不需要使用sess.run()。

代码语言:javascript复制
# Iterator for the dataset
dataset = tf.data.Dataset.from_tensor_slices(
    (mnist.train.images, mnist.train.labels)).batch(batch_size)
dataset_iter = tfe.Iterator(dataset)
定义模型(公式 损失函数 准确率计算)
代码语言:javascript复制
# Variables
W = tfe.Variable(tf.zeros([784, 10]), name='weights')
b = tfe.Variable(tf.zeros([10]), name='bias')

# Logistic regression (Wx   b)
def logistic_regression(inputs):
    return tf.matmul(inputs, W)   b

# Cross-Entropy loss function
def loss_fn(inference_fn, inputs, labels):
    # Using sparse_softmax cross entropy
    return tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(
        logits=inference_fn(inputs), labels=labels))

# Calculate accuracy
def accuracy_fn(inference_fn, inputs, labels):
    prediction = tf.nn.softmax(inference_fn(inputs))
    correct_pred = tf.equal(tf.argmax(prediction, 1), labels)
    return tf.reduce_mean(tf.cast(correct_pred, tf.float32))

补充: tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None):[4]

  • 第一个参数logits:就是神经网络最后一层的输出,如果有batch的话,它的大小就是[batchsize,num_classes],单样本的话,大小就是num_classes
  • 第二个参数labels:实际的标签,大小同上

执行下面两步操作:

返回值是一个向量,对向量求 tf.reduce_mean,得到loss。

设置优化器(SGD)
代码语言:javascript复制
# SGD Optimizer
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)

# Compute gradients
grad = tfe.implicit_gradients(loss_fn)
训练
代码语言:javascript复制
# Training
average_loss = 0.
average_acc = 0.
for step in range(num_steps):

    # Iterate through the dataset
    try:
        d = dataset_iter.next()
    except StopIteration:  # try...except,except用于处理异常
        # Refill queue
        dataset_iter = tfe.Iterator(dataset)
        d = dataset_iter.next()

    # Images
    x_batch = d[0]
    # Labels
    y_batch = tf.cast(d[1], dtype=tf.int64)

    # Compute the batch loss
    batch_loss = loss_fn(logistic_regression, x_batch, y_batch)
    average_loss  = batch_loss
    # Compute the batch accuracy
    batch_accuracy = accuracy_fn(logistic_regression, x_batch, y_batch)
    average_acc  = batch_accuracy

    if step == 0:
        # Display the initial cost, before optimizing
        print("Initial loss= {:.9f}".format(average_loss))

    # Update the variables following gradients info
    optimizer.apply_gradients(grad(logistic_regression, x_batch, y_batch))

    # Display info
    if (step   1) % display_step == 0 or step == 0:
        if step > 0:
            average_loss /= display_step
            average_acc /= display_step
        print("Step:", 'd' % (step   1), " loss=",
              "{:.9f}".format(average_loss), " accuracy=",
              "{:.4f}".format(average_acc))
        average_loss = 0.
        average_acc = 0.

代码语言:javascript复制
Initial loss= 2.302585363
Step: 0001  loss= 2.302585363  accuracy= 0.1172
Step: 0100  loss= 0.952338576  accuracy= 0.7955
Step: 0200  loss= 0.535867393  accuracy= 0.8712
Step: 0300  loss= 0.485415280  accuracy= 0.8757
Step: 0400  loss= 0.433947176  accuracy= 0.8843
Step: 0500  loss= 0.381990731  accuracy= 0.8971
Step: 0600  loss= 0.394154936  accuracy= 0.8947
Step: 0700  loss= 0.391497582  accuracy= 0.8905
Step: 0800  loss= 0.386373132  accuracy= 0.8945
Step: 0900  loss= 0.332039326  accuracy= 0.9096
Step: 1000  loss= 0.358993709  accuracy= 0.9002
测试
代码语言:javascript复制
# Evaluate model on the test image set
testX = mnist.test.images
testY = mnist.test.labels

test_acc = accuracy_fn(logistic_regression, testX, testY)
print("Testset Accuracy: {:.4f}".format(test_acc))

代码语言:javascript复制
Testset Accuracy: 0.9083

参考

[1] [tensorflow reduction_indices理解]https://www.cnblogs.com/likethanlove/p/6547405.html

[2] [tf.argmax()以及axis解析]https://blog.csdn.net/qq575379110/article/details/70538051

[3] [TensorFlow全新的数据读取方式:Dataset API入门教程]https://blog.csdn.net/kwame211/article/details/78579035

[4] [【TensorFlow】tf.nn.softmax_cross_entropy_with_logits的用法]https://blog.csdn.net/mao_xiao_feng/article/details/53382790

0 人点赞