Logstash:Data转换,分析,提取,丰富及核心操作

2021-01-08 15:54:52 浏览数 (1)

腾讯云 Elasticsearch Service】高可用,可伸缩,云端全托管。集成X-Pack高级特性,适用日志分析/企业搜索/BI分析等场景


在今天的这篇文章中,着重介绍 Logstash 在数据转换,分析,提取及核心操作方便的内容。首先,希望大家已经按照我之前的文章 “如何安装Elastic栈中的Logstash” 把 Logstash 安装好。

Logstash 数据源

我们知道 Logstash 可以在很多的应用场景中使用。它有各种各样的数据源,比如:

这些数据丰富多彩。为了能够让这些数据最终能进入到 Elasticsearch 中进行分析,我们必须对数据源的数据进行各种处理,并最终形成对于我们有用的信息。

Logstash plugins

运行 Logstash 实例时,除了启动配置的管道外,它还会在端口 9600 上启动 Logstash 监视 API 端点。请注意,Logstash 监视 API仅在 Logstash 5.0   及更高版本中可用。我们可以在浏览器中的如下地址查看我们安装的所有 plugins:

代码语言:javascript复制
http://localhost:9600/_node/plugins?pretty

Logstash 是一个非常容易进行扩张的框架。它可以对各种的数据进行分析处理。这依赖于目前提供的超过 200 多个 plugin。首先,我们来查看一下目前有哪些 plugin:

Input plugins:

我们首先进入到 Logstash 的安装目录下的bin子目录,并在命令行中打入如下的命令:

代码语言:javascript复制
$ ./logstash-plugin list --group input

显示:

代码语言:javascript复制
logstash-input-azure_event_hubslogstash-input-beatslogstash-input-couchdb_changeslogstash-input-elasticsearchlogstash-input-execlogstash-input-filelogstash-input-ganglialogstash-input-gelflogstash-input-generatorlogstash-input-graphitelogstash-input-heartbeatlogstash-input-httplogstash-input-http_pollerlogstash-input-imaplogstash-input-jdbclogstash-input-jmslogstash-input-kafkalogstash-input-pipelogstash-input-rabbitmqlogstash-input-redislogstash-input-s3logstash-input-snmplogstash-input-snmptraplogstash-input-sqslogstash-input-stdinlogstash-input-sysloglogstash-input-tcplogstash-input-twitterlogstash-input-udplogstash-input-unix

Filter plugs:

在命令行打入如下的命令:

代码语言:javascript复制
$ ./logstash-plugin list --group filter
代码语言:javascript复制
logstash-filter-aggregatelogstash-filter-anonymizelogstash-filter-cidrlogstash-filter-clonelogstash-filter-csvlogstash-filter-datelogstash-filter-de_dotlogstash-filter-dissectlogstash-filter-dnslogstash-filter-droplogstash-filter-elasticsearchlogstash-filter-fingerprintlogstash-filter-geoiplogstash-filter-groklogstash-filter-httplogstash-filter-jdbc_staticlogstash-filter-jdbc_streaminglogstash-filter-jsonlogstash-filter-kvlogstash-filter-memcachedlogstash-filter-metricslogstash-filter-mutatelogstash-filter-prunelogstash-filter-rubylogstash-filter-sleeplogstash-filter-splitlogstash-filter-syslog_prilogstash-filter-throttlelogstash-filter-translatelogstash-filter-truncatelogstash-filter-urldecodelogstash-filter-useragentlogstash-filter-uuidlogstash-filter-xml

Output plugins:

在命令行打入如下的命令:

代码语言:javascript复制
$ ./logstash-plugin list --group output
代码语言:javascript复制
logstash-output-cloudwatchlogstash-output-csvlogstash-output-elastic_app_searchlogstash-output-elasticsearchlogstash-output-emaillogstash-output-filelogstash-output-graphitelogstash-output-httplogstash-output-lumberjacklogstash-output-nagioslogstash-output-nulllogstash-output-pipelogstash-output-rabbitmqlogstash-output-redislogstash-output-s3logstash-output-snslogstash-output-sqslogstash-output-stdoutlogstash-output-tcplogstash-output-udplogstash-output-webhdfs

Codec plugins:

在命令行打入如下的命令:

代码语言:javascript复制
$ ./logstash-plugin list codec
代码语言:javascript复制
logstash-codec-avrologstash-codec-ceflogstash-codec-collectdlogstash-codec-dotslogstash-codec-ednlogstash-codec-edn_lineslogstash-codec-es_bulklogstash-codec-fluentlogstash-codec-graphitelogstash-codec-jsonlogstash-codec-json_lineslogstash-codec-linelogstash-codec-msgpacklogstash-codec-multilinelogstash-codec-netflowlogstash-codec-plainlogstash-codec-rubydebug

在这上面显示都是我们在安装 Logstash 后,已经给我们配置好的 plugin。我们可以自己开发自己的 plugin,并安装它。我们也可以安装一个别人已经开发好的 plugin。

 从上面我们可以看出来,因为 file 都在 input 及 output 之中,我们甚至可以做如下的配置:

代码语言:javascript复制
input {   file {      path => "C:/Program Files/Apache Software Foundation/Tomcat 7.0/logs/*access*"      type => "apache"   }} output {   file {      path => "C:/tpwork/logstash/bin/log/output.log"   }}

这样我们把 input 文件读入到 Logstash,经过它的处理后,就会变成下面的这种输出:

代码语言:javascript复制
0:0:0:0:0:0:0:1 - - [   25/Dec/2016:18:37:00  0800] "GET / HTTP/1.1" 200 11418
代码语言:javascript复制
{   "path":"C:/Program Files/Apache Software Foundation/Tomcat 7.0/logs/   localhost_access_log.2016-12-25.txt",   "@timestamp":"2016-12-25T10:37:00.363Z","@version":"1","host":"Dell-PC",   "message":"0:0:0:0:0:0:0:1 - - [25/Dec/2016:18:37:00  0800] "GET /   HTTP/1.1" 200 11418r","type":"apache","tags":[]}

安装 plugins

在标准的 Logstash 中,有很多的 plugin 已经被安装了,但是在有些场合,我们需要手动来安装一些我们所需要的 plugin,比如Exec output plugin。我们可以在bin目录先打人如下的命令:

代码语言:javascript复制
./bin/logstash-plugin install logstash-output-exec

这样我们用如下的命令来检查上面的plugin是否已经被成功安装了:

代码语言:javascript复制
./bin/logstash-plugin list --group output | grep exec
代码语言:javascript复制
$ ./bin/logstash-plugin list --group output | grep execJava HotSpot(TM) 64-Bit Server VM warning: Option UseConcMarkSweepGC was deprecated in version 9.0 and will likely be removed in a future release.WARNING: An illegal reflective access operation has occurredWARNING: Illegal reflective access by org.bouncycastle.jcajce.provider.drbg.DRBG (file:/Users/liuxg/elastic/logstash-7.4.0/vendor/jruby/lib/ruby/stdlib/org/bouncycastle/bcprov-jdk15on/1.61/bcprov-jdk15on-1.61.jar) to constructor sun.security.provider.Sun()WARNING: Please consider reporting this to the maintainers of org.bouncycastle.jcajce.provider.drbg.DRBGWARNING: Use --illegal-access=warn to enable warnings of further illegal reflective access operationsWARNING: All illegal access operations will be denied in a future releaselogstash-output-exec

读取 log 文件

Logstash 很容易设置来读取一个 log 文件。比如,我们可以通过如下的方式来读取一个 Apache 的 log 文件:

代码语言:javascript复制
input {  file {   	type => "apache"  	path => "/Users/liuxg/data/apache_logs" 	start_position => "beginning"	sincedb_path => "null"  }} output {	stdout { 		codec => rubydebug 	}}

我们甚至可以读取多个文件:

代码语言:javascript复制
# Pull in application-log data. They emit data in JSON form.input {  file {    path => [      "/var/log/app/worker_info.log",      "/var/log/app/broker_info.log",      "/var/log/app/supervisor.log"    ]    exclude => "*.gz"    type    => "applog"    codec   => "json"  }}

数据的系列化

我们可以使用已经提供的 Codec 来把我们的数据进行系列化,比如:

代码语言:javascript复制
input {  // Deserialize newline separated JSON  file  { path => “/some/sample.log”, codec => json }} output {  // Serialize to the msgpack format  redis { codec => msgpack }  stdout {    codec => rubydebug  }}

在我们的 Longstash 运行起来后,我们可以通过如下的命令在一个 terminal 中向文件 sample.json 添加内容:

代码语言:javascript复制
$ echo '{"name2", "liuxg2"}' >> ./sample.log

我们可以看到如下的输出:

代码语言:javascript复制
{      "@version" => "1",       "message" => "{"name2", "liuxg2"}",    "@timestamp" => 2019-09-12T07:37:56.639Z,          "host" => "localhost",          "tags" => [        [0] "_jsonparsefailure"    ],          "path" => "/Users/liuxg/data/sample.log"}

最常用的 codec

1) line 使用 “message” 中的数据将每行转换为 Logstash 事件。 也可以将输出格式化为自定义行 。

2) multiline: 允许您为 “message” 构成任意边界。 经常用于stacktraces 等。也可以在 filebeat 中完成。

3) json_lines: 解析换行符分隔的 JSON 数据

4) json: 解析所有JSON。 仅适用于面向消息的输入/输出,如 Redis/Kafka/HTTP 等

 还有很多其它的 Codec。

解析及提取

Grok Filter

代码语言:javascript复制
filter {	grok {		match => [			"message", "%{TIMESTAMP_ISO8601:timestamp_string}%{SPACE}%{GREEDYDATA:line}"		]	}}

上面的例子可以帮我们很方便地把如下的log信息变成一个机构化的数据:

代码语言:javascript复制
 2019-09-09T13:00:00Z Whose woods these are I think I know.

更多 grok 的 pattern 可以在地址 grok pattern 找到。

Date filter

代码语言:javascript复制
filter {  date {    match => ["timestamp_string", "ISO8601"]  }}

Date filter 可以帮我们把一个字符串,变成一个我们想要的格式的时间,并且把这个值赋予给 @timestamp 字段。

Dissect filter

是一个更快,轻量级的更小的 grok:

代码语言:javascript复制
filter {  dissect {    mapping => {“message” => “%{id} %{function->} %{server}”}  }}

字段和分隔符模式的格式类似于 Grok。

例子:

代码语言:javascript复制
input {  generator {    message => "<1>Oct 16 20:21:22 www1 1,2016/10/16 20:21:20,3,THREAT,SCAN,6,2016/10/16 20:21:20,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54"    count => 1  }} filter {  if [message] =~ "THREAT," {    dissect {      mapping => {        message => "<%{priority}>%{syslog_timestamp} %{ syslog_timestamp} %{ syslog_timestamp} %{logsource} %{pan_fut_use_01},%{pan_rec_time},%{pan_serial_number},%{pan_type},%{pan_subtype},%{pan_fut_use_02},%{pan_gen_time},%{pan_src_ip},%{pan_dst_ip},%{pan_nat_src_ip},%{pan_nat_dst_ip},%{pan_rule_name},%{pan_src_user},%{pan_dst_user},%{pan_app},%{pan_vsys},%{pan_src_zone},%{pan_dst_zone},%{pan_ingress_intf},%{pan_egress_intf},%{pan_log_fwd_profile},%{pan_fut_use_03},%{pan_session_id},%{pan_repeat_cnt},%{pan_src_port},%{pan_dst_port},%{pan_nat_src_port},%{pan_nat_dst_port},%{pan_flags},%{pan_prot},%{pan_action},%{pan_misc},%{pan_threat_id},%{pan_cat},%{pan_severity},%{pan_direction},%{pan_seq_number},%{pan_action_flags},%{pan_src_location},%{pan_dst_location},%{pan_content_type},%{pan_pcap_id},%{pan_filedigest},%{pan_cloud},%{pan_user_agent},%{pan_file_type},%{pan_xff},%{pan_referer},%{pan_sender},%{pan_subject},%{pan_recipient},%{pan_report_id},%{pan_anymore}"      }    }  }}  output {	stdout { 		codec => rubydebug 	}}

运行后:

代码语言:javascript复制
{             "@timestamp" => 2019-09-12T09:20:46.514Z,             "pan_dst_ip" => "9",         "pan_nat_src_ip" => "10",               "sequence" => 0,              "logsource" => "www1",         "pan_session_id" => "23",               "pan_vsys" => "16",                "pan_cat" => "34",          "pan_rule_name" => "12",           "pan_gen_time" => "2016/10/16 20:21:20",         "pan_seq_number" => "37",            "pan_subject" => "50",                   ....                   "message" => "<1>Oct 16 20:21:22 www1 1,2016/10/16 20:21:20,3,THREAT,SCAN,6,2016/10/16 20:21:20,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54",         "pan_fut_use_02" => "6",              "pan_flags" => "29",       "syslog_timestamp" => "Oct 16 20:21:22",            "pan_anymore" => "53,54"}

更多描述,请到 地址 查看。

KV filter

解析键/值对中数据的简便方法

代码语言:javascript复制
filter {  kv {    source => “message”    target => “parsed”    value_split => “:”  }}

我们运行这样的 conf 文件:

代码语言:javascript复制
input {  generator {    message => "pin=12345~0&d=123&e=foo@bar.com&oq=bobo&ss=12345"    count => 1  }} filter {	kv {		source => "message"		target => "parsed"		field_split => "&?"	}} output {	stdout { 		codec => rubydebug 	}}

显示的结果是:

代码语言:javascript复制
{    "@timestamp" => 2019-09-12T09:46:04.944Z,          "host" => "localhost",        "parsed" => {         "ss" => "12345",          "e" => "foo@bar.com",        "pin" => "12345~0",         "oq" => "bobo",          "d" => "123"    },       "message" => "pin=12345~0&d=123&e=foo@bar.com&oq=bobo&ss=12345",      "sequence" => 0,      "@version" => "1"}

对于 kv flter 来说,我们也可以使用一个target来把信息组织到一个 object 里,比如:

代码语言:javascript复制
filter {  kv {    source => “message”    target => “parsed”    value_split => “:”  }}

核心操作

Mutate filter

这个filter提供很多功能:

  • 转换字段类型(从字符串到整数等)
  • 添加/重命名/替换/复制字段
  • 大/小写转换
  • 将数组连接在一起(对于Array => String操作很有用)
  • 合并哈希
  • 将字段拆分为数组
  • 剥去空白
代码语言:javascript复制
input {  generator {    message => "pin=12345~0&d=123&e=foo@bar.com&oq=bobo&ss=12345"    count => 1  }} filter {	kv {		source => "message"		field_split => "&?"	} 	if [pin] == "12345~0" {    	mutate { add_tag => [ 'metrics' ]    }     mutate {    	split => ["message", "&"]    	add_field => {"foo" => "bar-%{pin}"}  	}  }} output {	stdout { 		codec => rubydebug 	} 	if "metrics" in [tags] {      stdout {         codec => line { format => "custom format: %{message}" }      }   }}

显示的结果是:

代码语言:javascript复制
{     "foo" => "bar-12345~0",      "e" => "foo@bar.com",      "sequence" => 0,       "message" => [        [0] "pin=12345~0",        [1] "d=123",        [2] "e=foo@bar.com",        [3] "oq=bobo",        [4] "ss=12345"    ],           "pin" => "12345~0",             "d" => "123",          "host" => "localhost",            "ss" => "12345",    "@timestamp" => 2019-09-14T15:03:15.141Z,            "oq" => "bobo",      "@version" => "1",          "tags" => [        [0] "metrics"    ]}custom format: pin=12345~0,d=123,e=foo@bar.com,oq=bobo,ss=12345

最核心的转化 filters

  • Mute - 修改/添加每个项
  • Split - 把一个事件转化为多个事件
  • Drop - 丢掉一个事件

条件逻辑

  • if/else
  • 可以用 =~来使用 regexps(正则)
  • 可以在一个数组里检查一个会员
代码语言:javascript复制
filter {  mutate { lowercase => “account” }  if [type] == “batch” {    split {         field => actions        target => action     }  }   if { “action” =~ /special/ } {    drop {}  }}

GeoIP

GeoIP 过滤器丰富IP地址信息:

代码语言:javascript复制
filter {  geoip {    fields => “my_geoip_field”  }}

运行如下的配置:

代码语言:javascript复制
input {  generator {    message => "83.149.9.216"    count => 1  }} filter {	grok {    	match => {      		"message" => '%{IPORHOST:clientip}'    	}    }     geoip {    	source => "clientip"  	}} output {	stdout {		codec => rubydebug	}}

显示的结果如下:

代码语言:javascript复制
{          "host" => "localhost",      "@version" => "1",      "clientip" => "83.149.9.216",       "message" => "83.149.9.216",    "@timestamp" => 2019-09-15T06:54:46.695Z,      "sequence" => 0,         "geoip" => {              "timezone" => "Europe/Moscow",           "region_code" => "MOW",              "latitude" => 55.7527,         "country_code3" => "RU",        "continent_code" => "EU",             "longitude" => 37.6172,          "country_name" => "Russia",              "location" => {            "lat" => 55.7527,            "lon" => 37.6172        },                    "ip" => "83.149.9.216",           "postal_code" => "102325",         "country_code2" => "RU",           "region_name" => "Moscow",             "city_name" => "Moscow"    }}

我们可以看到在 geoip 之下,有很多具体的信息。

DNS filter

用DNS信息丰富主机名的更多信息

代码语言:javascript复制
filter {  dns {    fields => “my_dns_field”  }}

我们定义如下的一个 Logstash 配置文件:

代码语言:javascript复制
input {  generator {    message => "www.google.com"    count => 1  }} filter { 	mutate {    	add_field => { "hostname" => "172.217.160.110"}	}  	dns {		reverse => ["hostname"]		action => "replace"	 	}    } output {	stdout {		codec => rubydebug	}}

上面是谷歌的地址,那么它的输出结果是:

代码语言:javascript复制
{          "host" => "localhost",      "sequence" => 0,       "message" => "www.google.com",    "@timestamp" => 2019-09-15T11:35:43.791Z,      "hostname" => "tsa03s06-in-f14.1e100.net",      "@version" => "1"}

在这里我们可以看到 hostname 的值。

Useragent filer

让浏览器的 useragent 信息更加丰富。我们使用如下的Logstash配置:

代码语言:javascript复制
input {  generator {    message => '83.149.9.216 - - [17/May/2015:10:05:50  0000] "GET /presentations/logstash-monitorama-2013/images/kibana-dashboard.png HTTP/1.1" 200 321631 "http://semicomplete.com/presentations/logstash-monitorama-2013/" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/32.0.1700.77 Safari/537.36"'    count => 1  }} filter {	grok {	    match => {	      "message" => '%{IPORHOST:clientip} %{USER:ident} %{USER:auth} [%{HTTPDATE:timestamp}] "%{WORD:verb} %{DATA:request} HTTP/%{NUMBER:httpversion}" %{NUMBER:response:int} (?:-|%{NUMBER:bytes:int}) %{QS:referrer} %{QS:agent}'	    }	  } 	useragent {    	source => "agent"    	target => "useragent"  	}} output {	stdout {		codec => rubydebug	}}

运行出来的结果是:

代码语言:javascript复制
{        "request" => "/presentations/logstash-monitorama-2013/images/kibana-dashboard.png",      "useragent" => {            "name" => "Chrome",           "build" => "",          "device" => "Other",        "os_major" => "10",              "os" => "Mac OS X",           "minor" => "0",           "major" => "32",         "os_name" => "Mac OS X",           "patch" => "1700",        "os_minor" => "9"    },       "sequence" => 0,        "message" => "83.149.9.216 - - [17/May/2015:10:05:50  0000] "GET /presentations/logstash-monitorama-2013/images/kibana-dashboard.png HTTP/1.1" 200 321631 "http://semicomplete.com/presentations/logstash-monitorama-2013/" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/32.0.1700.77 Safari/537.36"",      "timestamp" => "17/May/2015:10:05:50  0000",       "referrer" => ""http://semicomplete.com/presentations/logstash-monitorama-2013/"",       "clientip" => "83.149.9.216",          "ident" => "-",           "auth" => "-",       "response" => 200,       "@version" => "1",           "verb" => "GET",           "host" => "localhost",     "@timestamp" => 2019-09-15T12:03:34.650Z,    "httpversion" => "1.1",          "bytes" => 321631,          "agent" => ""Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/32.0.1700.77 Safari/537.36""}

我们在 useragent 里可以看到更加详细的信息啊。

Translate Filter

使用本地的数据来使得数据更加丰富。我们使用如下的 Logstash 配置文件:

代码语言:javascript复制
input {  generator {    message => '83.149.9.216 - - [17/May/2015:10:05:50  0000] "GET /presentations/logstash-monitorama-2013/images/kibana-dashboard.png HTTP/1.1" 200 321631 "http://semicomplete.com/presentations/logstash-monitorama-2013/" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/32.0.1700.77 Safari/537.36"'    count => 1  }} filter {	grok {	    match => {	      "message" => '%{IPORHOST:clientip} %{USER:ident} %{USER:auth} [%{HTTPDATE:timestamp}] "%{WORD:verb} %{DATA:request} HTTP/%{NUMBER:httpversion}" %{NUMBER:response:int} (?:-|%{NUMBER:bytes:int}) %{QS:referrer} %{QS:agent}'	    }	 } 	translate {		field => "[response]"		destination => "[http_status_description]"		dictionary => {         	"100" => "Continue"          	"101" => "Switching Protocols"          	"200" => "OK"          	"500" => "Server Error"		}				fallback => "I'm a teapot"	}	}  output {	stdout {		codec => rubydebug	}}

运行显示的结果是:

代码语言:javascript复制
{                       "auth" => "-",                       "host" => "localhost",                  "timestamp" => "17/May/2015:10:05:50  0000",                    "message" => "83.149.9.216 - - [17/May/2015:10:05:50  0000] "GET /presentations/logstash-monitorama-2013/images/kibana-dashboard.png HTTP/1.1" 200 321631 "http://semicomplete.com/presentations/logstash-monitorama-2013/" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/32.0.1700.77 Safari/537.36"",                "httpversion" => "1.1",                   "@version" => "1",                   "response" => 200,                   "clientip" => "83.149.9.216",                       "verb" => "GET",                   "sequence" => 0,                   "referrer" => ""http://semicomplete.com/presentations/logstash-monitorama-2013/"",                      "agent" => ""Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/32.0.1700.77 Safari/537.36"",    "http_status_description" => "OK",                      "ident" => "-",                 "@timestamp" => 2019-09-15T12:30:09.575Z,                      "bytes" => 321631,                    "request" => "/presentations/logstash-monitorama-2013/images/kibana-dashboard.png"}

我们可以看到一项 http_status_description,它的值变为 “OK”。

Elasticsearch Filter

从 Elasticsearch 中的 index 得到数据,并丰富事件。为了做这个测试,我们先建立一个叫做 elasticsearch_filter 的 index:

代码语言:javascript复制
PUT ç/_doc/1{  "name":"liuxg",  "age": 20,  "@timestamp": "2019-09-15"}

在这里,我必须指出来的是:我们必须有一个叫做@timestamp的项,否则会有错误。这个是用来做sort用的。

我们采用如下的Logstash配置:

代码语言:javascript复制
input {  generator {    message => "liuxg"    count => 1  }} filter {	elasticsearch {		hosts => ["http://localhost:9200"]		index => ["elasticsearch_filter"]		query => "name.keyword:%{[message]}"		result_size => 1		fields => {"age" => "user_age"}	}} output {	stdout {		codec => rubydebug	}}

运行上面的例子显示的结果是:

代码语言:javascript复制
{      "user_age" => 20,          "host" => "localhost",       "message" => "liuxg",      "@version" => "1",    "@timestamp" => 2019-09-15T13:21:29.742Z,      "sequence" => 0}

我们可以看到 user_age 是20。这个是通过搜索 name:liuxg 来得到的。

参考:

【1】Getting started with Logstash


最新活动

包含文章发布时段最新活动,前往ES产品介绍页,可查找ES当前活动统一入口

Elasticsearch Service自建迁移特惠政策>>

Elasticsearch Service 新用户特惠狂欢,最低4折首购优惠 >>

Elasticsearch Service 企业首购特惠,助力企业复工复产>>

关注“腾讯云大数据”公众号,技术交流、最新活动、服务专享一站Get~

0 人点赞