文章目录
- 1 概述
- 2 常用命令
- 3 conda 下的多版本 python 共存
1 概述
Anaconda 是一个 Python 的科学计算发行版,有包含超过100个在数据科学中比较受欢迎的 Python, R, Scala 的分支,超过720个 package。Anaconda 提供了一个编译好的环境可以直接安装,可以为开发者省去很多编译出错、兼容性等的问题。补充一个官网上 Anaconda 的定义:
Anaconda Distribution is a free, easy-to-install package manager, environment manager and Python distribution with a collection of over 720 open source packages with free community support.
Anaconda 有图形化界面的工具,称为 Anaconda Navigator。官网上关于 AN 的介绍:
Anaconda Navigator is a desktop graphical user interface included in Anaconda that allows you to launch applications and easily manage conda packages, environments and channels without the need to use command line commands.
同时 Anaconda 有终端工具:conda。conda list
这个命令可以看 conda 是否正常安装了并且能够正常运行。Anaconda 可以配合 IDE 一起使用:相当于在 project interpreter 把项目的虚拟环境和 Anaconda 联系起来。关于 Jupyter Notebook 的使用:安装命令 conda install nb_conda
。有了 conda 之后再切换环境就会很方便了。
2 常用命令
代码语言:javascript复制# 查看 conda 版本
conda --version
# 更新 conda
conda update conda
# 创建以 snowflakes 为环境名的 biopython 程序包
conda create --name snowflakes biopython
# 查看 conda 环境信息
conda info --envs
# 激活 conda 环境 [envname] 为环境名
source activate [envname]
# 删除环境
conda remove --name flowers --all
# 列出 conda 安装的所有 package
conda list
# 通过 conda 安装 package
conda install --channel https://conda.anaconda.org/pandas bottleneck
3 conda 下的多版本 python 共存
查看 conda 的官方帮助是很容易的,只需要命令 conda --help
。而在 conda 中设置 Python 环境需要用到 create
命令,查看该命令的帮助,可以获得设置环境的方法。
➜ workspace conda create --help
usage: conda create [-h] [-y] [--dry-run] [-f] [--file FILE] [--no-deps]
[--only-deps] [-m] [-C] [--use-local] [--offline]
[--no-pin] [-c CHANNEL] [--override-channels]
[-n ENVIRONMENT | -p PATH] [-q] [--copy] [-k]
[--update-dependencies] [--no-update-dependencies]
[--channel-priority] [--no-channel-priority] [--clobber]
[--show-channel-urls] [--no-show-channel-urls]
[--download-only] [--json] [--debug] [--verbose]
[--clone ENV] [--no-default-packages]
[package_spec [package_spec ...]]
帮助提示中有 conda create -n myenv sqlite
,所以举个例子,如果像创建一个名为 py27
的 python 2.7 的环境,可以输入以下命令 conda create -n py27 python=python2.7
。
要查看本地的 python 环境,可以利用 conda env list
进行查看。
➜ workspace conda env list
# conda environments:
#
base * /Users/runzhliu/anaconda3
python35 /Users/runzhliu/anaconda3/envs/python35
your_env_name /Users/runzhliu/anaconda3/envs/your_env_name