读取图像一般是两个库:opencv和PIL
1、使用opencv读取图像
代码语言:javascript复制import cv2
image=cv2.imread("/content/drive/My Drive/colab notebooks/image/cat1.jpg")
print(image.shape)
(490, 410, 3)
2、使用PIL读取图像
代码语言:javascript复制import PIL
image=PIL.Image.open("/content/drive/My Drive/colab notebooks/image/cat1.jpg")
print(image.shape)
这里会报错:
代码语言:javascript复制AttributeError Traceback (most recent call last)
代码语言:javascript复制<ipython-input-30-807ec7af434b> in <module>()
1 import PIL
2 image=PIL.Image.open("/content/drive/My Drive/colab notebooks/image/cat1.jpg")
----> 3 print(image.shape)
代码语言:javascript复制AttributeError: 'JpegImageFile' object has no attribute 'shape'
我们要输出要这么做:
代码语言:javascript复制import numpy as np
print(np.array(image).shape)
(490, 410, 3)
需要注意的是:
使用opencv读取图像之后是BGR格式的,使用PIL读取图像之后是RGB格式的。
3、opencv格式的和PIL格式的之间的转换
这里参考:https://www.cnblogs.com/enumx/p/12359850.html
(1)opencv格式转换为PIL格式
代码语言:javascript复制import cv2
from PIL import Image
import numpy
img = cv2.imread("plane.jpg")
cv2.imshow("OpenCV",img)
image = Image.fromarray(cv2.cvtColor(img,cv2.COLOR_BGR2RGB))
image.show()
cv2.waitKey()
(2)PIL格式转换为opencv格式
代码语言:javascript复制import cv2
from PIL import Image
import numpy
image = Image.open("plane.jpg")
image.show()
img = cv2.cvtColor(numpy.asarray(image),cv2.COLOR_RGB2BGR)
cv2.imshow("OpenCV",img)
cv2.waitKey()
4、使用pytorch读取一张图片并进行分类预测
需要注意两个问题:
- 输入要转换为:[1,channel,H,W]
- 对输入的图像进行数据增强时要求是PIL.Image格式的
import torchvision
import sys
import torch
import torch.nn as nn
from PIL import Image
sys.path.append("/content/drive/My Drive/colab notebooks")
import glob
import numpy as np
import torchvision.transforms as transforms
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model=torchvision.models.resnet18(pretrained=False)
model.fc = nn.Linear(model.fc.in_features,4,bias=False)
model.to(device)
model.eval()
save_path="/content/drive/My Drive/colab notebooks/checkpoint/resnet18_best_v2.t7"
checkpoint = torch.load(save_path)
model.load_state_dict(checkpoint['model'])
print("当前模型准确率为:",checkpoint["epoch_acc"])
images_path="/content/drive/My Drive/colab notebooks/data/dataset/test/four"
transform = transforms.Compose([transforms.Resize((224,224))])
def predict():
true_labels=[]
output_labels=[]
for image in glob.glob(images_path "/*.png"):
print(image)
true_labels.append(0)
#image=Image.open(image)
#image=image.resize((224,224))
image=cv2.imread(image)
image=cv2.resize(image,(224,224))
image = Image.fromarray(cv2.cvtColor(image,cv2.COLOR_BGR2RGB))
#print(np.array(image).shape)
tensor=torch.from_numpy(np.asarray(image)).permute(2,0,1).float()/255.0
tensor=tensor.reshape((1,3,224,224))
tensor=tensor.to(device)
#print(tensor.shape)
output=model(tensor)
print(output)
_, pred = torch.max(output.data,1)
output_labels.append(pred.item())
return true_labels,output_labels
true_labels,output_labels=predict()
print("正确的标签是:")
print(true_labels)
print("预测的标签是:")
print(output_labels)