pytorch读取一张图像进行分类预测需要注意的问题(opencv、PIL)

2020-08-26 09:43:18 浏览数 (1)

读取图像一般是两个库:opencv和PIL

1、使用opencv读取图像

代码语言:javascript复制
import cv2
image=cv2.imread("/content/drive/My Drive/colab notebooks/image/cat1.jpg")
print(image.shape)

(490, 410, 3)

2、使用PIL读取图像

代码语言:javascript复制
import PIL
image=PIL.Image.open("/content/drive/My Drive/colab notebooks/image/cat1.jpg")
print(image.shape)

这里会报错:

代码语言:javascript复制
AttributeError                            Traceback (most recent call last)
代码语言:javascript复制
<ipython-input-30-807ec7af434b> in <module>()
      1 import PIL
      2 image=PIL.Image.open("/content/drive/My Drive/colab notebooks/image/cat1.jpg")
----> 3 print(image.shape)
代码语言:javascript复制
AttributeError: 'JpegImageFile' object has no attribute 'shape'

我们要输出要这么做:

代码语言:javascript复制
import numpy as np
print(np.array(image).shape)

(490, 410, 3)

需要注意的是:

使用opencv读取图像之后是BGR格式的,使用PIL读取图像之后是RGB格式的。

3、opencv格式的和PIL格式的之间的转换

这里参考:https://www.cnblogs.com/enumx/p/12359850.html

(1)opencv格式转换为PIL格式

代码语言:javascript复制
import cv2
from PIL import Image
import numpy
 
img = cv2.imread("plane.jpg")
cv2.imshow("OpenCV",img)
image = Image.fromarray(cv2.cvtColor(img,cv2.COLOR_BGR2RGB))
image.show()
cv2.waitKey()

(2)PIL格式转换为opencv格式

代码语言:javascript复制
import cv2
from PIL import Image
import numpy
 
image = Image.open("plane.jpg")
image.show()
img = cv2.cvtColor(numpy.asarray(image),cv2.COLOR_RGB2BGR)
cv2.imshow("OpenCV",img)
cv2.waitKey()

4、使用pytorch读取一张图片并进行分类预测

需要注意两个问题:

  • 输入要转换为:[1,channel,H,W]
  • 对输入的图像进行数据增强时要求是PIL.Image格式的
代码语言:javascript复制
import torchvision
import sys
import torch
import torch.nn as nn
from PIL import Image
sys.path.append("/content/drive/My Drive/colab notebooks")
import glob
import numpy as np
import torchvision.transforms as transforms

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model=torchvision.models.resnet18(pretrained=False)
model.fc = nn.Linear(model.fc.in_features,4,bias=False)
model.to(device)
model.eval()
save_path="/content/drive/My Drive/colab notebooks/checkpoint/resnet18_best_v2.t7" 
checkpoint = torch.load(save_path)
model.load_state_dict(checkpoint['model'])
print("当前模型准确率为:",checkpoint["epoch_acc"])
images_path="/content/drive/My Drive/colab notebooks/data/dataset/test/four"
transform = transforms.Compose([transforms.Resize((224,224))])
def predict():
  true_labels=[]
  output_labels=[]
  for image in glob.glob(images_path "/*.png"):
    print(image)
    true_labels.append(0)
    #image=Image.open(image)
    #image=image.resize((224,224))
    image=cv2.imread(image)
    image=cv2.resize(image,(224,224))
    image = Image.fromarray(cv2.cvtColor(image,cv2.COLOR_BGR2RGB))
    #print(np.array(image).shape)
    tensor=torch.from_numpy(np.asarray(image)).permute(2,0,1).float()/255.0
    tensor=tensor.reshape((1,3,224,224))
    tensor=tensor.to(device)
    #print(tensor.shape)
    output=model(tensor)
    print(output)
    _, pred = torch.max(output.data,1)
    output_labels.append(pred.item())
  return true_labels,output_labels

true_labels,output_labels=predict()
print("正确的标签是:")
print(true_labels)
print("预测的标签是:")
print(output_labels)

0 人点赞