岭回归与多项式回归的最大区别就是损失函数上的区别。岭回归的代价函数如下:
为了方便计算导数,通常也会写成以下形式:
上述式子中w为长度为n的向量,不包括偏置项的系数 θ0,θ是长度为n 1的向量,包括偏置项系数θ0;m为样本数,n为特征数。
岭回归的代价函数仍然是凸函数,因此可以利用梯度等于0的方式求得全局最优解:
上述方程与一般线性回归方程相比多了一项λI,其中I表示单位矩阵,加入XTX是一个奇异矩阵(不满秩),添加这一项之后可以保证该项可逆,由于单位矩阵上的对角元素均为1,其余元素都为0,看起来像是一条山岭,因此而得名。
还可以使用随机梯度下降算法来求解:
参数更新就可以如下表示:
上述解释摘自:https://www.cnblogs.com/Belter/p/8536939.html
接下来是实现代码,代码来源: https://github.com/eriklindernoren/ML-From-Scratch
首先还是定义一个基类,各种线性回归都需要继承该基类:
代码语言:javascript复制class Regression(object):
""" Base regression model. Models the relationship between a scalar dependent variable y and the independent
variables X.
Parameters:
-----------
n_iterations: float
The number of training iterations the algorithm will tune the weights for.
learning_rate: float
The step length that will be used when updating the weights.
"""
def __init__(self, n_iterations, learning_rate):
self.n_iterations = n_iterations
self.learning_rate = learning_rate
def initialize_weights(self, n_features):
""" Initialize weights randomly [-1/N, 1/N] """
limit = 1 / math.sqrt(n_features)
self.w = np.random.uniform(-limit, limit, (n_features, ))
def fit(self, X, y):
# Insert constant ones for bias weights
X = np.insert(X, 0, 1, axis=1)
self.training_errors = []
self.initialize_weights(n_features=X.shape[1])
# Do gradient descent for n_iterations
for i in range(self.n_iterations):
y_pred = X.dot(self.w)
# Calculate l2 loss
mse = np.mean(0.5 * (y - y_pred)**2 self.regularization(self.w))
self.training_errors.append(mse)
# Gradient of l2 loss w.r.t w
grad_w = -(y - y_pred).dot(X) self.regularization.grad(self.w)
# Update the weights
self.w -= self.learning_rate * grad_w
def predict(self, X):
# Insert constant ones for bias weights
X = np.insert(X, 0, 1, axis=1)
y_pred = X.dot(self.w)
return y_pred
岭回归的核心就是l2正则化项:
代码语言:javascript复制class l2_regularization():
""" Regularization for Ridge Regression """
def __init__(self, alpha):
self.alpha = alpha
def __call__(self, w):
return self.alpha * 0.5 * w.T.dot(w)
def grad(self, w):
return self.alpha * w
然后是岭回归的核心代码:
代码语言:javascript复制class PolynomialRidgeRegression(Regression):
"""Similar to regular ridge regression except that the data is transformed to allow
for polynomial regression.
Parameters:
-----------
degree: int
The degree of the polynomial that the independent variable X will be transformed to.
reg_factor: float
The factor that will determine the amount of regularization and feature
shrinkage.
n_iterations: float
The number of training iterations the algorithm will tune the weights for.
learning_rate: float
The step length that will be used when updating the weights.
"""
def __init__(self, degree, reg_factor, n_iterations=3000, learning_rate=0.01, gradient_descent=True):
self.degree = degree
self.regularization = l2_regularization(alpha=reg_factor)
super(PolynomialRidgeRegression, self).__init__(n_iterations,
learning_rate)
def fit(self, X, y):
X = normalize(polynomial_features(X, degree=self.degree))
super(PolynomialRidgeRegression, self).fit(X, y)
def predict(self, X):
X = normalize(polynomial_features(X, degree=self.degree))
return super(PolynomialRidgeRegression, self).predict(X)
其中的一些具体函数的用法可参考:https://www.cnblogs.com/xiximayou/p/12802868.html
最后是主函数:
代码语言:javascript复制from __future__ import print_function
import matplotlib.pyplot as plt
import sys
sys.path.append("/content/drive/My Drive/learn/ML-From-Scratch/")
import numpy as np
import pandas as pd
# Import helper functions
from mlfromscratch.supervised_learning import PolynomialRidgeRegression
from mlfromscratch.utils import k_fold_cross_validation_sets, normalize, Plot
from mlfromscratch.utils import train_test_split, polynomial_features, mean_squared_error
def main():
# Load temperature data
data = pd.read_csv('mlfromscratch/data/TempLinkoping2016.txt', sep="t")
time = np.atleast_2d(data["time"].values).T
temp = data["temp"].values
X = time # fraction of the year [0, 1]
y = temp
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4)
poly_degree = 15
# Finding regularization constant using cross validation
lowest_error = float("inf")
best_reg_factor = None
print ("Finding regularization constant using cross validation:")
k = 10
for reg_factor in np.arange(0, 0.1, 0.01):
cross_validation_sets = k_fold_cross_validation_sets(
X_train, y_train, k=k)
mse = 0
for _X_train, _X_test, _y_train, _y_test in cross_validation_sets:
model = PolynomialRidgeRegression(degree=poly_degree,
reg_factor=reg_factor,
learning_rate=0.001,
n_iterations=10000)
model.fit(_X_train, _y_train)
y_pred = model.predict(_X_test)
_mse = mean_squared_error(_y_test, y_pred)
mse = _mse
mse /= k
# Print the mean squared error
print ("tMean Squared Error: %s (regularization: %s)" % (mse, reg_factor))
# Save reg. constant that gave lowest error
if mse < lowest_error:
best_reg_factor = reg_factor
lowest_error = mse
# Make final prediction
model = PolynomialRidgeRegression(degree=poly_degree,
reg_factor=reg_factor,
learning_rate=0.001,
n_iterations=10000)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
print ("Mean squared error: %s (given by reg. factor: %s)" % (mse, reg_factor))
y_pred_line = model.predict(X)
# Color map
cmap = plt.get_cmap('viridis')
# Plot the results
m1 = plt.scatter(366 * X_train, y_train, color=cmap(0.9), s=10)
m2 = plt.scatter(366 * X_test, y_test, color=cmap(0.5), s=10)
plt.plot(366 * X, y_pred_line, color='black', linewidth=2, label="Prediction")
plt.suptitle("Polynomial Ridge Regression")
plt.title("MSE: %.2f" % mse, fontsize=10)
plt.xlabel('Day')
plt.ylabel('Temperature in Celcius')
plt.legend((m1, m2), ("Training data", "Test data"), loc='lower right')
plt.savefig("test1.png")
plt.show()
if __name__ == "__main__":
main()
结果:
代码语言:javascript复制Finding regularization constant using cross validation:
Mean Squared Error: 13.812293192023807 (regularization: 0.0)
Mean Squared Error: 13.743127176668661 (regularization: 0.01)
Mean Squared Error: 13.897319799448272 (regularization: 0.02)
Mean Squared Error: 13.755294291853932 (regularization: 0.03)
Mean Squared Error: 13.864603077117456 (regularization: 0.04)
Mean Squared Error: 14.13017742349847 (regularization: 0.05)
Mean Squared Error: 14.031692893193021 (regularization: 0.06)
Mean Squared Error: 14.12160512870597 (regularization: 0.07)
Mean Squared Error: 14.462275871359097 (regularization: 0.08)
Mean Squared Error: 14.155492625301093 (regularization: 0.09)
Mean squared error: 9.743831581107068 (given by reg. factor: 0.09)