「R」使用有限混合模型

2020-08-28 14:41:12 浏览数 (1)

模拟数据

代码语言:javascript复制
library(ggplot2)library(flexmix)#> Loading required package: latticem1 <- 0m2 <- 50sd1 <- sd2 <- 5N1 <- 100N2 <- 10
a <- rnorm(n=N1, mean=m1, sd=sd1)b <- rnorm(n=N2, mean=m2, sd=sd2)

绘制数据图形

代码语言:javascript复制
x <- c(a,b)class <- c(rep('a', N1), rep('b', N2))data <- data.frame(cbind(x=as.numeric(x), class=as.factor(class)))
library("ggplot2")p <- ggplot(data, aes(x = x))     geom_histogram(aes(x, ..density..), binwidth = 1, colour = "black", fill = "white")    geom_vline(xintercept = m1, col = "red", size = 2)     geom_vline(xintercept = m2, col = "blue", size = 2)p

拟合模型

这里我们可以看到应该是由2个分布混合而成,试着去恢复相应分布的参数:

代码语言:javascript复制
set.seed(0)
mo1 <- FLXMRglm(family = "gaussian")mo2 <- FLXMRglm(family = "gaussian")flexfit <- flexmix(x ~ 1, data = data, k = 2, model = list(mo1, mo2))print(table(clusters(flexfit), data$class))#>    #>       1   2#>   1   0  10#>   2 100   0

区分效果很好(其实可以用这种方法去分类)。

查看结果

代码语言:javascript复制
parameters(flexfit)#> [[1]]#>                  Comp.1 Comp.2#> coef.(Intercept)  48.76   0.37#> sigma              5.84   4.78#> #> [[2]]#>                  Comp.1 Comp.2#> coef.(Intercept)  48.76   0.37#> sigma              5.84   4.78

输出参数:

代码语言:javascript复制
c1 <- parameters(flexfit, component=2)[[1]]c2 <- parameters(flexfit, component=1)[[1]]
cat('pred:', c1[1], 'n')#> pred: 0.37cat('true:', m1, 'nn')#> true: 0cat('pred:', c1[2], 'n')#> pred: 4.78cat('true:', sd1, 'nn')#> true: 5
cat('pred:', c2[1], 'n')#> pred: 48.8cat('true:', m2, 'nn')#> true: 50cat('pred:', c2[2], 'n')#> pred: 5.84cat('true:', sd2, 'nn')#> true: 5

基本能拟合出原始分布。

可视化拟合

代码语言:javascript复制
plot_mix_comps <- function(x, mu, sigma, lam) {  lam * dnorm(x, mu, sigma)}
lam <- table(clusters(flexfit))  ggplot(data)  geom_histogram(aes(x, ..density..), binwidth = 1, colour = "black", fill = "white")  stat_function(geom = "line", fun = plot_mix_comps,                args = list(c1[1], c1[2], lam[2]/sum(lam)),                colour = "red", lwd = 1.5)  stat_function(geom = "line", fun = plot_mix_comps,                args = list(c2[1], c2[2], lam[1]/sum(lam)),                colour = "blue", lwd = 1.5)  ylab("Density")

新的问题

能否自动推断出有2个分布以及它们的参数??

代码语言:javascript复制
flexfit = stepFlexmix(x ~ 1, data = data, k = 1:5, model = FLXMRglm(family = "gaussian"))#> 1 : * * *#> 2 : * * *#> 3 : * * *#> 4 : * * *#> 5 : * * *flexfit#> #> Call:#> stepFlexmix(x ~ 1, data = data, model = FLXMRglm(family = "gaussian"), #>     k = 1:5)#> #>   iter converged k k0 logLik AIC BIC ICL#> 1    2      TRUE 1  1   -452 908 913 913#> 2   13      TRUE 2  2   -363 736 750 750#> 3   36      TRUE 3  3   -360 735 757 795#> 4   69      TRUE 4  4   -360 741 771 860#> 5   66      TRUE 4  5   -360 741 771 874

根据 BIC 选择一个最佳的模型:

代码语言:javascript复制
fitBest = getModel(flexfit, which = "BIC")str(fitBest, max.level = 2)#> Formal class 'flexmix' [package "flexmix"] with 18 slots#>   ..@ posterior  :List of 2#>   ..@ weights    : NULL#>   ..@ iter       : int 13#>   ..@ cluster    : int [1:110] 1 1 1 1 1 1 1 1 1 1 ...#>   ..@ logLik     : num -363#>   ..@ df         : num 5#>   ..@ control    :Formal class 'FLXcontrol' [package "flexmix"] with 6 slots#>   ..@ group      : Factor w/ 0 levels: #>   ..@ size       : Named int [1:2] 100 10#>   .. ..- attr(*, "names")= chr [1:2] "1" "2"#>   ..@ converged  : logi TRUE#>   ..@ k0         : int 2#>   ..@ model      :List of 1#>   ..@ prior      : num [1:2] 0.9091 0.0909#>   ..@ components :List of 2#>   ..@ concomitant:Formal class 'FLXP' [package "flexmix"] with 7 slots#>   ..@ formula    :Class 'formula'  language x ~ 1#>   .. .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv> #>   ..@ call       : language stepFlexmix(x ~ 1, data = data, model = FLXMRglm(family = "gaussian"),      k = 2)#>   ..@ k          : int 2

查看参数:

代码语言:javascript复制
parameters(fitBest)#>                  Comp.1 Comp.2#> coef.(Intercept)   0.37  48.76#> sigma              4.78   5.84

这个我们的输入非常接近,但也存在一个不小的误差:

代码语言:javascript复制
print(paste(m1, sd1))  #> [1] "0 5"print(paste(m2, sd2))#> [1] "50 5"

使用不同的接口

Flexmix 这个包的文档看起来让人很蒙蔽,完全搞不懂核心的一些建模函数。我下面测试下不同的接口使用的效果。

代码语言:javascript复制
set.seed(0)

fit1 <- flexmix(x ~ 1, data = data, k = 2, model = FLXMRglm(family = "gaussian"))parameters(fit1)#>                  Comp.1 Comp.2#> coef.(Intercept)  48.76   0.37#> sigma              5.84   4.78fit2 <- flexmix(x ~ 1, data = data, k = 2, model = FLXMCnorm1())parameters(fit2)#>      Comp.1 Comp.2#> mean  48.76   0.37#> sd     6.12   4.78

使用泊松分布来拟合试试,先生成泊松分布数据:

代码语言:javascript复制
N1 <- 100N2 <- 10
a <- rpois(N1, 0)b <- rpois(N2, 50)
x <- c(a,b)class <- c(rep('a', N1), rep('b', N2))data <- data.frame(cbind(x=as.numeric(x), class=as.factor(class)))fit3 <- flexmix(x ~ 1, data = data, k = 2, model = FLXMCmvpois())parameters(fit3)#> Comp.1.lambda Comp.2.lambda #>          48.3           0.0fit4 <- flexmix(x ~ 1, data = data, k = 2, model = FLXMRglm(family = "poisson"))parameters(fit4)#> Comp.1.coef.(Intercept) Comp.2.coef.(Intercept) #>                    3.88                  -28.67

FLXMCmvpois() 显示的是 demo driver,但却比 FLXMRglm(family = "poisson") 结果准确的多!!

不能理解这个包的哲学,尽管它看起来是那么的优秀~

更新:2019-09-17 发现 flexmix 提供的功能大体分为两类,以 FLXMC 开头的是做聚类的,而以 FLXMR 开头的是做回归的。

能否重复分析?

代码语言:javascript复制
set.seed(1234)
fit <- flexmix(x ~ 1, data = data, k = 2, model = FLXMCmvpois())parameters(fit)#> Comp.1.lambda Comp.2.lambda #>          48.3           0.0set.seed(1234)
fit <- flexmix(x ~ 1, data = data, k = 2, model = FLXMCmvpois())parameters(fit)#> Comp.1.lambda Comp.2.lambda #>          48.3           0.0

对于 step 方法?

代码语言:javascript复制
set.seed(1234)stepfit = stepFlexmix(x ~ 1, data = data, k = 1:5, model = FLXMCmvpois())#> 1 : * * *#> 2 : * * *#> 3 : * * *#> 4 : * * *#> 5 : * * *fit = getModel(flexfit, which = "BIC")parameters(fit)#>                  Comp.1 Comp.2#> coef.(Intercept)   0.37  48.76#> sigma              4.78   5.84set.seed(1234)stepfit = stepFlexmix(x ~ 1, data = data, k = 1:5, model = FLXMCmvpois())#> 1 : * * *#> 2 : * * *#> 3 : * * *#> 4 : * * *#> 5 : * * *fit = getModel(flexfit, which = "BIC")parameters(fit)#>                  Comp.1 Comp.2#> coef.(Intercept)   0.37  48.76#> sigma              4.78   5.84

结果显示一致

本文前半部分示例来自《A Practical Introduction To Finite Mixture Models[1]

参考资料

[1]

A Practical Introduction To Finite Mixture Models: https://jef.works/blog/2017/08/05/a-practical-introduction-to-finite-mixture-models/

0 人点赞