0.引子
以OpenFace算法中实现人脸识别的流程举例,这个流程可以看做是使用深度卷积网络处理人脸问题的一个基本框架,结构如下图所示
由上图可知人脸识别项目可以分为5个主要步骤:
1,首先输入一张照片;2,对照片检测出人脸并分类出是否为活体;3,对检测到的活体人脸进行对齐和裁切人脸;4,对对齐和裁切后人脸进行特征提取,表征为特征码;5,对表征后成对特征码进行比对。
2.详细介绍
1、Input Image -> Detect
输入:原始的可能含有人脸的图像。
输出:活体人脸位置的bounding box。
这一步称之为“人脸检测”(Face Detection),在OpenFace中,使用的是dlib、OpenCV现有的人脸检测方法。此方法与深度学习无关,使用的特征是传统计算机视觉中的方法(一般是Hog、Haar等特征)。
对人脸检测这一步感兴趣的可以参考下列资料:
dlib的实现:http://blog.dlib.net/2014/02/dlib-186-released-make-your-own-object.html
openCV的实现:Face Detection using Haar Cascades
后面一些算法也开始使用深度学习目标检测的算法来检测人脸,如MTCNN等。
对检测到的人脸,还需判断是否为照片和视频等非活体人脸,需要将检测到的人脸输入活体分类网络,筛选出活体人脸。
2、Detect -> Transform -> Crop
输入:原始图像 人脸位置bounding box
输出:“校准”过的只含有人脸的图像
对于输入的原始图像 bounding box,这一步要做的事情就是要检测人脸中的关键点,然后根据这些关键点对人脸做对齐校准。所谓关键点,就是下图所示的绿色的点,通常是眼角的位置、鼻子的位置、脸的轮廓点等等。有了这些关键点后,我们就可以把人脸“校准”,或者说是“对齐”。解释就是原先人脸可能比较歪,这里根据关键点,使用仿射变换将人脸统一“摆正”,尽量去消除姿势不同带来的误差。这一步我们一般叫Face Alignment(人脸对齐)。
在OpenFace中,这一步同样使用的是传统方法,特点是比较快,对应的论文是:
https://pdfs.semanticscholar.org/d78b/6a5b0dcaa81b1faea5fb0000045a62513567.pdf
3、Crop -> Representation
输入:校准后的单张人脸图像
输出:一个向量表示。
这一步就是使用深度卷积网络,将输入的人脸图像,转换成一个向量的表示。在OpenFace中使用的向量是128x1的,也就是一个128维的向量。
VGG16是深度学习中一个比较简单的基本模型。输入神经网络的是图像,经过一系列卷积后,全连接分类得到类别概率。
在通常的图像应用中,我们可以去掉全连接层,用计算的特征(一般就是卷积层的最后一层,e.g. 图中的conv5_3)来当作提取的特征进行计算。但如果对人脸识别问题同样采用这样的方法,即,使用卷积层最后一层做为人脸的“向量表示”,效果其实是不好的。如何改进?我们之后再谈,这里先谈谈我们希望这种人脸的“向量表示”应该具有哪些性质。
在理想的状况下,我们希望“向量表示”之间的距离就可以直接反映人脸的相似度:
对于同一个人的人脸图像,对应的向量的欧几里得距离应该比较小。
对于不同人的人脸图像,对应的向量之间的欧几里得距离应该比较大。
这种表示实际上就可以看做某种“embedding”。在原始的VGG16模型中,我们使用的是softmax损失,没有对每一类的向量表示之间的距离做出要求。所以不能直接用作人脸表示。
举个例子,使用CNN对MNIST进行分类,我们设计一个特殊的卷积网络,让最后一层的向量变为2维,此时可以画出每一类对应的2维向量表示的图(图中一种颜色对应一种类别):
上图是我们直接使用softmax训练得到的结果,它就不符合我们希望特征具有的特点:
我们希望同一类对应的向量表示尽可能接近。但这里同一类(如紫色),可能具有很大的类间距离。
我们希望不同类对应的向量应该尽可能远。但在图中靠中心的位置,各个类别的距离都很近。
那么训练人脸特征表示的正确姿势是什么?其实有很多种方法。一种方法就是使用“center loss”。centor loss实际上是在softmax的loss上再加入一个损失,这个损失对每一类规定了一个“中心”点,每一类的特征应该离这个中心点比较近,而不同类的中心点离的比较远。加入center loss后,训练出的特征大致长这样:
这样的特征表示就比较符合我们的要求了。center loss的原始论文在这里:http://ydwen.github.io/papers/WenECCV16.pdf 。上面这两幅图同样是从这篇论文中截下来的。
顺带一提,除了center loss外。学习人脸特征表示的方法还有很多,如triplet loss(论文地址:A Unified Embedding for Face Recognition and Clustering)。triplet loss直接这样的用三元组(A的图像1,A的图像2,B的图像)来训练网络。去掉了最后的分类层,强迫神经网络对相同的人脸图像(三元组中的同一人A)建立统一的表达。
4、实际应用
输入:人脸的向量表示。
有了人脸的向量表示后,剩下的问题就非常简单了。因为这种表示具有相同人对应的向量的距离小,不同人对应的向量距离大的特点。接下来一般的应用有以下几类:
人脸验证(Face Identification)。就是检测A、B是否是属于同一个人。只需要计算向量之间的距离,设定合适的报警阈值(threshold)即可。
人脸识别(Face Recognition)。这个应用是最多的,给定一张图片,检测数据库中与之最相似的人脸。显然可以被转换为一个求距离的最近邻问题。
人脸聚类(Face Clustering)。在数据库中对人脸进行聚类,直接K-Means即可。
-1.参考:
https://www.zhihu.com/question/60759296/answer/180176680