Python数据分析---matplotlib可视化(堆叠柱状图-月份)

2020-03-11 15:01:38 浏览数 (1)

偶然看到网上国家统计数据,利用Python数据分析自己做了几种图表练习。主要采用Pandas来做数据统计,matplotlib来做图表可视化。

下面图表数据来源于网络。

堆叠柱状图

代码如下:

代码语言:python代码运行次数:0复制
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

from matplotlib.patches import Patch
from matplotlib.lines import Line2D



plt.rcParams['font.family']='sans-serif'
plt.rcParams['font.sans-serif']='SimHei'
df=pd.read_excel('d:/网络收集数据.xlsx')
df2=pd.read_excel('d:/网络收集数据.xlsx',1)

width = 0.35       # the width of the bars: can also be len(x) sequence

df2.set_index('城市名',inplace=True)


citys=['郑州市', '开封市', '鹤壁市', '新乡市', '焦作市', '濮阳市','安阳市' ]
def getPlot(city):
    df=df2.loc[city]
    df.reset_index(inplace=True)
    fig, ax = plt.subplots(figsize=(10,6))
    labels=df.月份.map(lambda x:str(x) '月')
    y1=df['2018年二氧化硫_省辖市'].apply(round) 
    y2=df['2018年氮氧化物_省辖市'].apply(round) 
    y3=df['2018年烟尘_省辖市'].apply(round) 


    y21=df['2019年二氧化硫_省辖市'].apply(round) 
    y22=df['2019年氮氧化物_省辖市'].apply(round) 
    y23=df['2019年烟尘_省辖市'].apply(round) 

    x = np.arange(len(labels))  # the label locations
    rects1=ax.bar(x-width/2.0, y1, width,  label='二氧化硫',color="tab:blue",linewidth=18)
    rects2=ax.bar(x-width/2.0,y2 , width,  bottom=y1,label='氮氧化物',color="tab:orange")

    rects3=ax.bar(x-width/2.0,y3 , width, bottom=y2 y1,label='烟尘',color="tab:green")


    rects11=ax.bar(x width/2.0 0.04, y21, width,  label='二氧化硫',color="tab:blue")
    rects22=ax.bar(x width/2.0 0.04,y22 , width,  bottom=y21,label='氮氧化物',color="tab:orange")

    rects33=ax.bar(x width/2.0 0.04,y23 , width, bottom=y22 y21, label='烟尘',color="tab:green")


    ax.set_ylabel('吨')
 
    title='2018-2019年%s排放情况'%(city)
    ax.set_title(title)
    plt.xticks(x,labels)

    yy=np.array([y1,y2,y3])
    yy2=yy.cumsum(0)


    yyy=np.array([y21,y22,y23])
    yyy2=yyy.cumsum(0)
    def autolabel1(rects,rectIndex):
        """Attach a text label above each bar in *rects*, displaying its height."""
        for i,rect in enumerate(rects):
            height = (yy2[rectIndex-1][i] if rectIndex >0 else 0) yy[rectIndex][i]/2.0
            value=yy[rectIndex][i]
            ax.annotate('{}'.format(value),
                        xy=(rect.get_x()   rect.get_width() / 2, height-5),
                        xytext=(0, 3),  # 3 points vertical offset
                        textcoords="offset points",
                        ha='center', va='bottom')


    def autolabel2(rects,rectIndex):
        """Attach a text label above each bar in *rects*, displaying its height."""
        for i,rect in enumerate(rects):
            height = (yyy2[rectIndex-1][i] if rectIndex >0 else 0) yyy[rectIndex][i]/2.0
            value=yyy[rectIndex][i]
            ax.annotate('{}'.format(value),
                        xy=(rect.get_x()   rect.get_width() / 2, height-5),
                        xytext=(0, 3),  # 3 points vertical offset
                        textcoords="offset points",
                        ha='center', va='bottom')


    autolabel1(rects1,0)
    autolabel1(rects2,1)
    autolabel1(rects3,2)

    autolabel2(rects11,0)
    autolabel2(rects22,1)
    autolabel2(rects33,2)



 
    #ax.legend([rects1,rects2,rects3],['二氧化硫', '氮氧化物', '烟尘'])
    #ax2.legend([p1,p2],['2018年SO2监测值','2019年SO2监测值'])


    legend_elements = [

    Patch(facecolor='tab:blue', edgecolor='b',label='二氧化硫'),
    Patch(facecolor='tab:orange', edgecolor='b',label='氮氧化物'),
    Patch(facecolor='tab:green', edgecolor='b',label='烟尘'),
   
                   
                        ]

    ax.legend(handles=legend_elements, loc='best')
                     
    plt.savefig(title '.png')

for city in citys:
    print(city)
    getPlot(city)
    

0 人点赞