Python数据分析---matplotlib可视化(堆叠柱状图-污染物排放)

2020-03-11 15:01:55 浏览数 (1)

偶然看到网上国家统计数据,利用Python数据分析自己做了几种图表练习。主要采用Pandas来做数据统计,matplotlib来做图表可视化。

下面图表数据来源于网络。

堆叠柱状图

代码如下:

代码语言:python代码运行次数:0复制
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

from matplotlib.font_manager import FontProperties

plt.rcParams['font.family']='sans-serif'
plt.rcParams['font.sans-serif']='SimHei'
df=pd.read_excel('d:/网络收集数据.xlsx')
df2=pd.read_excel('d:/网络收集数据.xlsx',1)

regionTypes=["省辖市","市辖区"]

def getPlot(regionType):
    width=0.35
    fig, ax = plt.subplots(figsize=(10,6))
    labels=df.月份
    y1=df['2018年二氧化硫_%s'%regionType].apply(round)
    y2=df['2018年氮氧化物_%s'%regionType].apply(round)
    y3=df['2018年烟尘_%s'%regionType].apply(round)


    y21=df['2019年二氧化硫_%s'%regionType].apply(round)
    y22=df['2019年氮氧化物_%s'%regionType].apply(round)
    y23=df['2019年烟尘_%s'%regionType].apply(round)

    x = np.arange(len(labels))  # the label locations
    rects1=ax.bar(x-width/2.0, y1, width,  label='二氧化硫',color="tab:blue",linewidth=18)
    rects2=ax.bar(x-width/2.0,y2 , width,  bottom=y1,label='氮氧化物',color="tab:orange")

    rects3=ax.bar(x-width/2.0,y3 , width, bottom=y2 y1,label='烟尘',color="tab:green")


    rects11=ax.bar(x width/2.0 0.04, y21, width,  label='二氧化硫',color="tab:blue")
    rects22=ax.bar(x width/2.0 0.04,y22 , width,  bottom=y21,label='氮氧化物',color="tab:orange")

    rects33=ax.bar(x width/2.0 0.04,y23 , width, bottom=y22 y21, label='烟尘',color="tab:green")


    ax.set_ylabel('吨')
    title='2018-2019年%s月度排放量情况'%regionType
    ax.set_title(title)
    ax.legend([rects1,rects2,rects3],['二氧化硫', '氮氧化物', '烟尘'])

    plt.xticks(x,labels)

    yy=np.array([y1,y2,y3])
    yy2=yy.cumsum(0)


    yyy=np.array([y21,y22,y23])
    yyy2=yyy.cumsum(0)

    fontProperties=FontProperties(size=9)
    def autolabel1(rects,rectIndex):
        """Attach a text label above each bar in *rects*, displaying its height."""
        for i,rect in enumerate(rects):
            height = (yy2[rectIndex-1][i] if rectIndex >0 else 0) yy[rectIndex][i]/2.0
            value=yy[rectIndex][i]
            ax.annotate('{}'.format(value),
                    xy=(rect.get_x()   rect.get_width() / 2, height-200),
                    xytext=(0, 3),  # 3 points vertical offset
                    textcoords="offset points",fontproperties=fontProperties,
                    ha='center', va='bottom')


    def autolabel2(rects,rectIndex):
        """Attach a text label above each bar in *rects*, displaying its height."""
        for i,rect in enumerate(rects):
            height = (yyy2[rectIndex-1][i] if rectIndex >0 else 0) yyy[rectIndex][i]/2.0
            value=yyy[rectIndex][i]
            ax.annotate('{}'.format(value),
                    xy=(rect.get_x()   rect.get_width() / 2, height-200),
                    xytext=(0, 3),  # 3 points vertical offset
                    textcoords="offset points",fontproperties=fontProperties,
                    ha='center', va='bottom')


    autolabel1(rects1,0)
    autolabel1(rects2,1)
    autolabel1(rects3,2)

    autolabel2(rects11,0)
    autolabel2(rects22,1)
    autolabel2(rects33,2)

    
    plt.savefig(title '.png')

for regionType in regionTypes:
    print(regionType)
    getPlot(regionType)
    

0 人点赞