接《马里奥 AI 实现方式探索 :神经网络 增强学习(上)》
马尔可夫决策过程(MDP)
一提到马尔科夫,大家通常会立刻想起马尔可夫链(Markov Chain)以及机器学习中更加常用的隐式马尔可夫模型(Hidden Markov Model, HMM)。它们都具有共同的特性便是马尔可夫性:当一个随机过程在给定现在状态及所有过去状态情况下,其未来状态的条件概率分布仅依赖于当前状态;换句话说,在给定现在状态时,它与过去状态(即该过程的历史路径)是条件独立的,那么此随机过程即具有马尔可夫性质。具有马尔可夫性质的过程通常称之为马尔可夫过程。7
之后我们便来说说马尔可夫决策过程(Markov Decision Process),其也具有马尔可夫性,与上面不同的是MDP考虑了动作,即系统下个状态不仅和当前的状态有关,也和当前采取的动作有关。
用表格描述马尔可夫各个模型的关系(摘自8)
基本定义
- S:表示状态集(states)
- A:表示一系列动作(actions)
- :表示状态转移概率。表示的是在当前s ∈ S状态下,经过a ∈ A作用后,会转移到的其他状态的概率分布情况。比如,在状态s下执行动作a,转移到s’的概率可以表示为p(s’|s,a)。
(dicount factor):表示阻尼系数[0,1)
- R:,表示回报函数(reward function) MDP 的动态过程如下:某个智能体(agent)的初始状态为s0,然后从 A 中挑选一个动作a0执行,执行后,agent 按概率随机转移到了下一个s1状态,s1∈ 。然后再执行一个动作a1,就转移到了s2,接下来再执行a2…,我们可以用下面的图表示状态转移的过程。如果回报r是根据状态s和动作a得到的,则MDP还可以表示成下图:值函数上面我们给出了MDP的定义,作为一个智能体(agent),当它在决定下一步应该走什么时,最简单的方式就是看下Reward函数的值是多少,即比较走不同动作的回报,从而做出决定。但是就像下棋的时候,我们每走一步都会向后考虑,所谓“走一步看三步”,所以这里我们只看一步即一次Reward函数是不够的,这就引出了值函数(Value Function)也叫折算累积回报(discounted cumulative reward)。状态值函数(state value function)当我们遵循某个策略,我们将值函数定义如下:我们将上面的式子写作递推的样子如下:另外当策略,在状态s时,我们可以确定唯一的动作a,但是s经过动作a会进入哪个状态是不唯一的,比如同样是掷骰子操作,可能得到的状态有6种,那么利用Bellman等式我们便可以得到下面的公式:再根据我们最初增强学习的目的,我们便可以得出,求V的目的就是想找到一个当前状态s下,最优的行动策略,表示如下:动作值函数(action value function)上面我们的值函数的只与状态s有关,如果与状态s和动作a都有关,便称为动作值函数,即所谓的Q函数,如下:从上式我们可以看出,我们不仅仅依赖状态s和策略,并且还依赖于动作a。综上我们可以将MDP的最优策略定义如下:关于MDP的求解主要分为值迭代和策略迭代,分别站在不同的角度对MDP进行求解,这里我们不在赘述,网上有很多相关资料。下面我们简单阐述下动作值函数的值迭代求解方式,即所谓的Q-learningQ学习Q学习的基本迭代公式如下:从公式中我们也可以看出它是一种值迭代方式,因为我们每次更新的是Q函数的值,而非策略。简单起见,整理一个简单的例子加以说明。假设我们有这样一个房间:我们的目的是训练一个机器人,使得它在图中的任意一个房间都能够到达房间外。OK,我们对房间进行建模:并得到reward矩阵:通过一下过程的迭代我们最终得出了我们的结果Q矩阵可以看出,我们的机器人现在无论在哪个房间,都可以利用我们的Q矩阵顺利的走到屋外。噗噗噗,终于写到这里了,综上我们将马里奥只能AI需要用到的算法简单整理了下(如有任何谬误请指出^v^)。下面我们结合两种成熟的算法,归纳整理马里奥AI的两种实现方式。基于NEAT算法的马里奥AI实现所谓NEAT算法即通过增强拓扑的进化神经网络(Evolving Neural Networks through Augmenting Topologies),算法不同于我们之前讨论的传统神经网络,它不仅会训练和修改网络的权值,同时会修改网络的拓扑结构,包括新增节点和删除节点等操作。 NEAT算法几个核心的概念是:
- 基因:网络中的连接
- 基因组:基因的集合
- 物种:一批具有相似性基因组的集合
- Fitness:有点类似于增强学习中的reward函数
- generation:进行一组训练的基因组集合,每一代训练结束后,会根据fitness淘汰基因组,并且通过无性繁殖和有性繁殖来新增新的基因组
- 基因变异:发生在新生成基因组的过程中,可能会出现改变网络的权重,增加突出连接或者神经元,也有可能禁用突触或者启用突触
下图我们展示了算法从最一开始简单的神经网络,一直训练到后期的网络
利用NEAT算法实现马里奥的只能通关的基本思想便是,利用上面NEAT算法的基本观点,从游戏内存中获取实时的游戏数据,判断马里奥是否死忙、计算Fitness值、判断马里奥是否通关等,从而将这些作为神经网络的输入,最后输出对马里奥的操作,包括上下左右跳跃等操作,如下图:
大多数该算法实现马里奥的智能通关都依赖于模拟器,运用lua语言编写相应脚本,获取游戏数据并操作马里奥。NeuroEvolution with MarI/O。实现效果图如下:
基于Deep Reinforcement Learning的马里奥AI实现
NEAT算法是相对提出较早的算法,在2013年大名鼎鼎的DeepMind提出了一种深度增强学习的算法,该算法主要结合了我们上面讨论的CNN和Q-Learning两种算法,DeepMind的研究人员将该算法应用在Atari游戏机中的多种小游戏中进行AI通关。
其基本算法核心便是我们之前介绍的CNN和增强学习的Q-Learning,游戏智能通关的基本流程如下图:
利用CNN来识别游戏总马里奥的状态,并利用增强学习算法做出动作选择,然后根据新的返回状态和历史状态来计算reward函数从而反馈给Q函数进行迭代,不断的训练直到游戏能够通关。研究人员在训练了一个游戏后,将相同的参数用在别的游戏中发现也是适用的,说明该算法具有一定的普遍性。下图反映了一个学习的过程
而同样的方法,将DRL应用在马里奥上,github上有一个开源的实现方式:aleju/mario-ai
其最终的实现效果图如下:
我们发现在CNN识别过程中,每4帧图像,才会进行一次CNN识别,这是识别速率的问题,图中曲线反映了直接回报函数和简介回报函数。
总结
综上便是从最基本的神经网络算法 增强学习,到将这些算法用在智能AI上的一些基本整理,长舒一口气,整理了好久。。。关于智能AI的应用有很多,也跟好多小伙伴讨论过,包括智能测试、新式游戏、游戏平衡性调整以及AI机器人的加入。这个领域除了枯燥的理论知识还能玩游戏,想想有点小激动。总结完毕,如有任何纰漏还请指出,我会尽快修改,谢谢^v^。
最后感谢smurfyu(于洋)、apache(何庆玮)的指导以及小伙伴lufyzhang(张宇飞)、youngywang(王洋)、supercwang(王超)、bingyanshi(施冰燕)
参考文献:
漫谈ANN(1):M-P模型
漫谈ANN(2):BP神经网络
卷积神经网络
R.Sutton et al. Reinforcement learning: An introduction , 1998
马尔可夫性质
增强学习(二)——- 马尔可夫决策过程MDP
增强学习(三)——- MDP的动态规划解法
增强学习(Reinforcement Learning and Control)
wiki-Q-learning
Q-Learning example
Stanley K O, Miikkulainen R. Evolving neural networks through augmenting topologiesJ. Evolutionary computation, 2002, 10(2): 99-127.
Wang Y, Schreiber B. Creating a Traffic Merging Behavior Using NeuroEvolution of Augmenting TopologiesJ. 2015.
Cussat-Blanc S, Harrington K, Pollack J. Gene regulatory network evolution through augmenting topologiesJ. IEEE Transactions on Evolutionary Computation, 2015, 19(6): 823-837.
Mnih V, Kavukcuoglu K, Silver D, et al. Playing atari with deep reinforcement learningJ. arXiv preprint arXiv:1312.5602, 2013.