www6668861com请拨18687679362环球国际3分钟实践:Python语言在Serverless

2020-03-30 10:35:07 浏览数 (1)

前言

随着各种社交论坛等的日益火爆,敏感词过滤逐渐成了非常重要的也是值得重视的功能。那么在Serverless架构下,通过Python语言,敏感词过滤又有那些新的实现呢?我们能否是用最简单的方法,实现一个敏感词过滤的API呢?

敏感过滤入门

Replace方法

如果说敏感词过滤,其实不如说是文本的替换,以Python为例,说到词汇替换,不得不想到replace,我们可以准备一个敏感词库,然后通过replace进行敏感词替换:

代码语言:javascript复制
def check_filter(keywords, text):
    for eve in keywords:
        text = text.replace(eve, "***")
    return text
keywords = ("关键词1", "关键词2", "关键词3")
content = "这是一个关键词替换的例子,这里涉及到了关键词1还有关键词2,最后还会有关键词3。"
print(check_filter(keywords, content))

但是动动脑大家就会发现,这种做法在文本和敏感词库非常庞大的前提下,会有很严重的性能问题。例如我将代码进行修改,进行基本的性能测试:

代码语言:javascript复制
import time

def check_filter(keywords, text):
    for eve in keywords:
        text = text.replace(eve, "***")
    return text
keywords =[ "关键词"   str(i) for i in range(0,10000)]
startTime = time.time()
content = "这是一个关键词替换的例子,这里涉及到了关键词1还有关键词2,最后还会有关键词3。" * 10000
check_filter(keywords, content)
print(time.time()-startTime)

此时的输出结果是:1.235044002532959,可以看到性能非常差。

正则表达方法

与其用replace,还不如通过正则表达re.sub来的更加快速。

代码语言:javascript复制
def check_filter(keywords, text):
     return re.sub("|".join(keywords), "***", text)
keywords = ("关键词1", "关键词2", "关键词3")
content = "这是一个关键词替换的例子,这里涉及到了关键词1还有关键词2,最后还会有关键词3。" 
print(check_filter(keywords, content))

我们同样增加性能测试,按照上面的方法进行改造测试,输出结果是0.47878289222717285。通过这样的例子,我们可以发现,这种做法在性能层面变高了很多,这少可以说提升了几倍,如果随着词库的增加,这个倍数会成倍增加。

DFA过滤敏感词

这种方法相对来说效率会更高一些。例如,我们认为坏人,坏孩子,坏蛋是敏感词,则他们的树关系可以表达:

用DFA字典来表示:

代码语言:javascript复制
{
    '坏': {
        '蛋': {
            'x00': 0
        }, 
        '人': {
            'x00': 0
        }, 
        '孩': {
            '子': {
                'x00': 0
            }
        }
    }
}

使用这种树表示问题最大的好处就是可以降低检索次数,提高检索效率,基本代码实现:

代码语言:javascript复制
import time


class DFAFilter(object):
    def __init__(self):
        self.keyword_chains = {}  # 关键词链表
        self.delimit = 'x00'  # 限定

    def add(self, keyword):
        keyword = keyword.lower()  # 关键词英文变为小写
        chars = keyword.strip()  # 关键字去除首尾空格和换行
        if not chars:  # 如果关键词为空直接返回
            return
        level = self.keyword_chains
        # 遍历关键字的每个字
        for i in range(len(chars)):
            # 如果这个字已经存在字符链的key中就进入其子字典
            if chars[i] in level:
                level = level[chars[i]]
            else:
                if not isinstance(level, dict):
                    break
                for j in range(i, len(chars)):
                    level[chars[j]] = {}
                    last_level, last_char = level, chars[j]
                    level = level[chars[j]]
                last_level[last_char] = {self.delimit: 0}
                break
        if i == len(chars) - 1:
            level[self.delimit] = 0

    def parse(self, path):
        with open(path, encoding='utf-8') as f:
            for keyword in f:
                self.add(str(keyword).strip())

    def filter(self, message, repl="*"):
        message = message.lower()
        ret = []
        start = 0
        while start < len(message):
            level = self.keyword_chains
            step_ins = 0
            for char in message[start:]:
                if char in level:
                    step_ins  = 1
                    if self.delimit not in level[char]:
                        level = level[char]
                    else:
                        ret.append(repl * step_ins)
                        start  = step_ins - 1
                        break
                else:
                    ret.append(message[start])
                    break
            else:
                ret.append(message[start])
            start  = 1

        return ''.join(ret)


startTime = time.time()
gfw = DFAFilter()
gfw.parse( "./sensitive_words.txt")
content = "这是一个关键词替换的例子,这里涉及到了关键词1还有关键词2,最后还会有关键词3。" * 10000
result = gfw.filter(content)
print(time.time()-startTime)

这里我们的字典库是:

代码语言:javascript复制
with open("./sensitive_words", 'w') as f:
    f.write("n".join( [ "关键词"   str(i) for i in range(0,10000)]))

执行结果:

代码语言:javascript复制
4.9114227294921875e-05

可以看到性能进一步提升。

AC自动机过滤敏感词算法

接下来,我们来看一下 AC自动机过滤敏感词算法:

AC自动机:一个常见的例子就是给出n个单词,再给出一段包含m个字符的文章,让你找出有多少个单词在文章里出现过。

简单地讲,AC自动机就是字典树 kmp算法 失配指针

代码实现:

代码语言:javascript复制
# AC自动机算法
class node(object):
    def __init__(self):
        self.next = {}
        self.fail = None
        self.isWord = False
        self.word = ""


class ac_automation(object):

    def __init__(self):
        self.root = node()

    # 添加敏感词函数
    def addword(self, word):
        temp_root = self.root
        for char in word:
            if char not in temp_root.next:
                temp_root.next[char] = node()
            temp_root = temp_root.next[char]
        temp_root.isWord = True
        temp_root.word = word

    # 失败指针函数
    def make_fail(self):
        temp_que = []
        temp_que.append(self.root)
        while len(temp_que) != 0:
            temp = temp_que.pop(0)
            p = None
            for key, value in temp.next.item():
                if temp == self.root:
                    temp.next[key].fail = self.root
                else:
                    p = temp.fail
                    while p is not None:
                        if key in p.next:
                            temp.next[key].fail = p.fail
                            break
                        p = p.fail
                    if p is None:
                        temp.next[key].fail = self.root
                temp_que.append(temp.next[key])

    # 查找敏感词函数
    def search(self, content):
        p = self.root
        result = []
        currentposition = 0

        while currentposition < len(content):
            word = content[currentposition]
            while word in p.next == False and p != self.root:
                p = p.fail

            if word in p.next:
                p = p.next[word]
            else:
                p = self.root

            if p.isWord:
                result.append(p.word)
                p = self.root
            currentposition  = 1
        return result

    # 加载敏感词库函数
    def parse(self, path):
        with open(path, encoding='utf-8') as f:
            for keyword in f:
                self.addword(str(keyword).strip())

    # 敏感词替换函数
    def words_replace(self, text):
        """
        :param ah: AC自动机
        :param text: 文本
        :return: 过滤敏感词之后的文本
        """
        result = list(set(self.search(text)))
        for x in result:
            m = text.replace(x, '*' * len(x))
            text = m
        return text

ah = ac_automation()
path = './sensitive_words'
ah.parse(path)
content = "这是一个关键词替换的例子,这里涉及到了关键词1还有关键词2,最后还会有关键词3。"
print(ah.words_replace(content))

词库同样是:

代码语言:javascript复制
with open("./sensitive_words", 'w') as f:
    f.write("n".join( [ "关键词"   str(i) for i in range(0,10000)]))

使用上面的方法,将content*10000测试结果为0.1727597713470459。

小结

可以看到这个所有算法中,在上述的基本算法中DFA过滤敏感词性能最高,但是实际上,对于后两者算法,并没有谁一定更好,可能某些时候,AC自动机过滤敏感词算法会得到更高的性能,所以在生产生活中,推荐时候用两者,可以根据自己的具体业务需要来做。

如何部署在Serverless架构下

很简单,以AC自动机过滤敏感词算法为例:我们只需要增加是几行代码就好,完整代码如下:

代码语言:javascript复制
# -*- coding:utf-8 -*-

import json, uuid


# AC自动机算法
class node(object):
    def __init__(self):
        self.next = {}
        self.fail = None
        self.isWord = False
        self.word = ""


class ac_automation(object):

    def __init__(self):
        self.root = node()

    # 添加敏感词函数
    def addword(self, word):
        temp_root = self.root
        for char in word:
            if char not in temp_root.next:
                temp_root.next[char] = node()
            temp_root = temp_root.next[char]
        temp_root.isWord = True
        temp_root.word = word

    # 失败指针函数
    def make_fail(self):
        temp_que = []
        temp_que.append(self.root)
        while len(temp_que) != 0:
            temp = temp_que.pop(0)
            p = None
            for key, value in temp.next.item():
                if temp == self.root:
                    temp.next[key].fail = self.root
                else:
                    p = temp.fail
                    while p is not None:
                        if key in p.next:
                            temp.next[key].fail = p.fail
                            break
                        p = p.fail
                    if p is None:
                        temp.next[key].fail = self.root
                temp_que.append(temp.next[key])

    # 查找敏感词函数
    def search(self, content):
        p = self.root
        result = []
        currentposition = 0

        while currentposition < len(content):
            word = content[currentposition]
            while word in p.next == False and p != self.root:
                p = p.fail

            if word in p.next:
                p = p.next[word]
            else:
                p = self.root

            if p.isWord:
                result.append(p.word)
                p = self.root
            currentposition  = 1
        return result

    # 加载敏感词库函数
    def parse(self, path):
        with open(path, encoding='utf-8') as f:
            for keyword in f:
                self.addword(str(keyword).strip())

    # 敏感词替换函数
    def words_replace(self, text):
        """
        :param ah: AC自动机
        :param text: 文本
        :return: 过滤敏感词之后的文本
        """
        result = list(set(self.search(text)))
        for x in result:
            m = text.replace(x, '*' * len(x))
            text = m
        return text


def response(msg, error=False):
    return_data = {
        "uuid": str(uuid.uuid1()),
        "error": error,
        "message": msg
    }
    print(return_data)
    return return_data


ah = ac_automation()
path = './sensitive_words'
ah.parse(path)


def main_handler(event, context):
    try:
        sourceContent = json.loads(event["body"])["content"]
        return response({
            "sourceContent": sourceContent,
            "filtedContent": ah.words_replace(sourceContent)
        })
    except Exception as e:
        return response(str(e), True)

最后,为了方便本地测试,我们可以增加:

代码语言:javascript复制
def test():
    event = {
        "requestContext": {
            "serviceId": "service-f94sy04v",
            "path": "/test/{path}",
            "httpMethod": "POST",
            "requestId": "c6af9ac6-7b61-11e6-9a41-93e8deadbeef",
            "identity": {
                "secretId": "abdcdxxxxxxxsdfs"
            },
            "sourceIp": "14.17.22.34",
            "stage": "release"
        },
        "headers": {
            "Accept-Language": "en-US,en,cn",
            "Accept": "text/html,application/xml,application/json",
            "Host": "service-3ei3tii4-251000691.ap-guangzhou.apigateway.myqloud.com",
            "User-Agent": "User Agent String"
        },
        "body": "{"content":"这是一个测试的文本,我也就呵呵了"}",
        "pathParameters": {
            "path": "value"
        },
        "queryStringParameters": {
            "foo": "bar"
        },
        "headerParameters": {
            "Refer": "10.0.2.14"
        },
        "stageVariables": {
            "stage": "release"
        },
        "path": "/test/value",
        "queryString": {
            "foo": "bar",
            "bob": "alice"
        },
        "httpMethod": "POST"
    }
    print(main_handler(event, None))


if __name__ == "__main__":
    test()

完成之后,我们就可以测试运行一下,例如我的字典是:

代码语言:javascript复制
呵呵
测试

执行之后结果:

代码语言:javascript复制
{'uuid': '9961ae2a-5cfc-11ea-a7c2-acde48001122', 'error': False, 'message': {'sourceContent': '这是一个测试的文本,我也就呵呵了', 'filtedContent': '这是一个**的文本,我也就**了'}}

接下来,我们将代码部署到云端,新建serverless.yaml:

代码语言:javascript复制
sensitive_word_filtering:
  component: "@serverless/tencent-scf"
  inputs:
    name: sensitive_word_filtering
    codeUri: ./
    exclude:
      - .gitignore
      - .git/**
      - .serverless
      - .env
    handler: index.main_handler
    runtime: Python3.6
    region: ap-beijing
    description: 敏感词过滤
    memorySize: 64
    timeout: 2
    events:
      - apigw:
          name: serverless
          parameters:
            environment: release
            endpoints:
              - path: /sensitive_word_filtering
                description: 敏感词过滤
                method: POST
                enableCORS: true
                param:
                  - name: content
                    position: BODY
                    required: 'FALSE'
                    type: string
                    desc: 待过滤的句子

然后通过sls --debug进行部署,部署结果:

最后,通过POSTMan进行测试:

额外的话

  • 对于敏感词库去那里获得问题,github上有很多,可以自己搜一下,中文的英文的都有。我这里只是一个例子;
  • 这个API使用场景,完全可以放在我们的社区跟帖系统/留言评论系统/博客发布系统中,防止出现敏感词汇,导致不必要的麻烦。

0 人点赞