快速学习-Kylin概述

2020-03-24 11:54:16 浏览数 (1)

第1章 概述

1.1 Kylin定义

Apache Kylin是一个开源的分布式分析引擎,提供Hadoop/Spark之上的SQL查询接口及多维分析(OLAP)能力以支持超大规模数据,最初由eBay Inc开发并贡献至开源社区。它能在亚秒内查询巨大的Hive表。

1.2 Kylin特点

Kylin的主要特点包括支持SQL接口、支持超大规模数据集、亚秒级响应、可伸缩性、高吞吐率、BI工具集成等。 1)标准SQL接口:Kylin是以标准的SQL作为对外服务的接口。 2)支持超大数据集:Kylin对于大数据的支撑能力可能是目前所有技术中最为领先的。早在2015年eBay的生产环境中就能支持百亿记录的秒级查询,之后在移动的应用场景中又有了千亿记录秒级查询的案例。 3)亚秒级响应:Kylin拥有优异的查询相应速度,这点得益于预计算,很多复杂的计算,比如连接、聚合,在离线的预计算过程中就已经完成,这大大降低了查询时刻所需的计算量,提高了响应速度。 4)可伸缩性和高吞吐率:单节点Kylin可实现每秒70个查询,还可以搭建Kylin的集群。 5)BI工具集成 Kylin可以与现有的BI工具集成,具体包括如下内容。 ODBC:与Tableau、Excel、PowerBI等工具集成 JDBC:与Saiku、BIRT等Java工具集成 RestAPI:与JavaScript、Web网页集成 Kylin开发团队还贡献了Zepplin的插件,也可以使用Zepplin来访问Kylin服务。

1.3 Kylin架构

1)REST Server REST Server是一套面向应用程序开发的入口点,旨在实现针对Kylin平台的应用开发工作。 此类应用程序可以提供查询、获取结果、触发Cube构建任务、获取元数据以及获取用户权限等等。另外可以通过Restful接口实现SQL查询。 2)查询引擎(Query Engine) 当Cube准备就绪后,查询引擎就能够获取并解析用户查询。它随后会与系统中的其它组件进行交互,从而向用户返回对应的结果。 3)Routing 负责将解析的SQL生成的执行计划转换成Cube缓存的查询,Cube是通过预计算缓存在hbase中,这部分查询可以在秒级设置毫秒级完成,而且还有一些操作使用过的查询原始数据(存储在Hadoop的HDFS中通过Hive查询)。这部分查询延迟较高。 4)元数据管理工具(Metadata) Kylin是一款元数据驱动型应用程序。元数据管理工具是一大关键性组件,用于对保存在Kylin当中的所有元数据进行管理,其中包括最为重要的Cube元数据。其它全部组件的正常运作都需以元数据管理工具为基础。Kylin的元数据存储在hbase中。 5)任务引擎(Cube Build Engine) 这套引擎的设计目的在于处理所有离线任务,其中包括Shell脚本、Java API以及Map Reduce任务等等。任务引擎对Kylin当中的全部任务加以管理与协调,从而确保每一项任务都能得到切实执行并解决其间出现的故障。

1.4 Kylin工作原理

Apache Kylin的工作原理本质上是MOLAP(Multidimension On-Line Analysis Processing)Cube,也就是多维立方体分析。是数据分析中非常经典的理论,下面对其做简要介绍。

1.4.1 维度和度量

维度:即观察数据的角度。比如员工数据,可以从性别角度来分析,也可以更加细化,从入职时间或者地区的维度来观察。维度是一组离散的值,比如说性别中的男和女,或者时间维度上的每一个独立的日期。因此在统计时可以将维度值相同的记录聚合在一起,然后应用聚合函数做累加、平均、最大和最小值等聚合计算。

度量:即被聚合(观察)的统计值,也就是聚合运算的结果。比如说员工数据中不同性别员工的人数,又或者说在同一年入职的员工有多少。

1.4.2 Cube和Cuboid

有了维度跟度量,一个数据表或者数据模型上的所有字段就可以分类了,它们要么是维度,要么是度量(可以被聚合)。于是就有了根据维度和度量做预计算的Cube理论。

给定一个数据模型,我们可以对其上的所有维度进行聚合,对于N个维度来说,组合的所有可能性共有2n种。对于每一种维度的组合,将度量值做聚合计算,然后将结果保存为一个物化视图,称为Cuboid。所有维度组合的Cuboid作为一个整体,称为Cube。

下面举一个简单的例子说明,假设有一个电商的销售数据集,其中维度包括时间[time]、商品[item]、地区[location]和供应商[supplier],度量为销售额。那么所有维度的组合就有24 = 16种,如下图所示:

一维度(1D)的组合有:[time]、[item]、[location]和[supplier]4种; 二维度(2D)的组合有:[time, item]、[time, location]、[time, supplier]、[item, location]、[item, supplier]、[location, supplier]3种; 三维度(3D)的组合也有4种;

最后还有零维度(0D)和四维度(4D)各有一种,总共16种。

注意:每一种维度组合就是一个Cuboid,16个Cuboid整体就是一个Cube。

1.4.3 核心算法

Kylin的工作原理就是对数据模型做Cube预计算,并利用计算的结果加速查询: 1)指定数据模型,定义维度和度量; 2)预计算Cube,计算所有Cuboid并保存为物化视图; 预计算过程是Kylin从Hive中读取原始数据,按照我们选定的维度进行计算,并将结果集保存到Hbase中,默认的计算引擎为MapReduce,可以选择Spark作为计算引擎。一次build的结果,我们称为一个Segment。构建过程中会涉及多个Cuboid的创建,具体创建过程kylin.Cube.algorithm参数决定,参数值可选 auto,layer 和 inmem, 默认值为 auto,即 Kylin 会通过采集数据动态地选择一个算法 (layer or inmem),如果用户很了解 Kylin 和自身的数据、集群,可以直接设置喜欢的算法。 3)执行查询,读取Cuboid,运行,产生查询结果。

1.4.3.1 逐层构建算法(layer)

我们知道,一个N维的Cube,是由1个N维子立方体、N个(N-1)维子立方体、N*(N-1)/2个(N-2)维子立方体、…、N个1维子立方体和1个0维子立方体构成,总共有2^N个子立方体组成,在逐层算法中,按维度数逐层减少来计算,每个层级的计算(除了第一层,它是从原始数据聚合而来),是基于它上一层级的结果来计算的。比如,[Group by A, B]的结果,可以基于[Group by A, B, C]的结果,通过去掉C后聚合得来的;这样可以减少重复计算;当 0维度Cuboid计算出来的时候,整个Cube的计算也就完成了。

每一轮的计算都是一个MapReduce任务,且串行执行;一个N维的Cube,至少需要N 1次MapReduce Job。

算法优点: 1)此算法充分利用了MapReduce的能力,处理了中间复杂的排序和洗牌工作,故而算法代码清晰简单,易于维护; 2)受益于Hadoop的日趋成熟,此算法对集群要求低,运行稳定;在内部维护Kylin的过程中,很少遇到在这几步出错的情况;即便是在Hadoop集群比较繁忙的时候,任务也能完成。

算法缺点: 1)当Cube有比较多维度的时候,所需要的MapReduce任务也相应增加;由于Hadoop的任务调度需要耗费额外资源,特别是集群较庞大的时候,反复递交任务造成的额外开销会相当可观; 2)此算法会对Hadoop MapReduce输出较多数据; 虽然已经使用了Combiner来减少从Mapper端到Reducer端的数据传输,所有数据依然需要通过Hadoop MapReduce来排序和组合才能被聚合,无形之中增加了集群的压力; 3)对HDFS的读写操作较多:由于每一层计算的输出会用做下一层计算的输入,这些Key-Value需要写到HDFS上;当所有计算都完成后,Kylin还需要额外的一轮任务将这些文件转成HBase的HFile格式,以导入到HBase中去;

总体而言,该算法的效率较低,尤其是当Cube维度数较大的时候。

1.4.3.2 快速构建算法(inmem)

也被称作“逐段”(By Segment) 或“逐块”(By Split) 算法,从1.5.x开始引入该算法,利用Mapper端计算先完成大部分聚合,再将聚合后的结果交给Reducer,从而降低对网络瓶颈的压力。该算法的主要思想是,对Mapper所分配的数据块,将它计算成一个完整的小Cube 段(包含所有Cuboid);每个Mapper将计算完的Cube段输出给Reducer做合并,生成大Cube,也就是最终结果;如图所示解释了此流程。

与旧算法相比,快速算法主要有两点不同: 1) Mapper会利用内存做预聚合,算出所有组合;Mapper输出的每个Key都是不同的,这样会减少输出到Hadoop MapReduce的数据量; 2)一轮MapReduce便会完成所有层次的计算,减少Hadoop任务的调配。

0 人点赞