Gamma校正

2020-03-25 12:51:29 浏览数 (1)

Gamma校正

Gamma源于CRT(显示器/电视机)的响应曲线,即其亮度与输入电压的非线性关系。

校正原理

液晶电视机显示器由于液晶屏红绿蓝三色电光特性不一致,表现为各个灰阶的颜色差异较大,需要校正各个灰阶的颜色。尤其暗场的灰阶误差非常明显,无法通过白平衡调节来清除各灰阶的颜色误差。只有各灰阶的颜色一致后,方能通过亮暗场的白平衡调节,将色温调节到要求的色温。另一方面液晶电视机显示器的亮度比较高,为了增加液晶电视机显示器的透亮度,更好地表现颜色,需要对液晶电视机显示器的亮度进行非线性校正。这些,都需要通过对液晶电视机显示器进行GAMMA校正来完成。校正GAMMA曲线后,可以实现如下目的:暗场灰阶的颜色明显改善,各灰阶的颜色误差明显减少,暗场颜色细节分明,图像亮度颜色一致,透亮度好,对比明显。同一尺寸不同屏的电视对颜色表现的明显一致。

实现步骤

假设图像中有一个像素,值是 200 ,那么对这个像素进行校正必须执行如下步骤:

  1. 归一化 :将像素值转换为 0 ~ 1 之间的实数。 算法如下 : ( i 0. 5)/256 这里包含 1 个除法和 1 个加法操作。对于像素 A 而言 , 其对应的归一化值为 0. 783203 。

  2. 预补偿 :根据公式 , 求出像素归一化后的 数据以 1 /gamma 为指数的对应值。这一步包含一个 求指数运算。若 gamma 值为 2. 2 , 则 1 /gamma 为 0. 454545 , 对归一化后的 A 值进行预补偿的结果就 是 0. 783203 ^0. 454545 = 0. 894872 。

  3. 反归一化 :将经过预补偿的实数值反变换为 0 ~ 255 之间的整数值。具体算法为 : f*256 - 0. 5 此步骤包含一个乘法和一个减法运算。续前 例 , 将 A 的预补偿结果 0. 894872 代入上式 , 得到 A 预补偿后对应的像素值为 228 , 这个 228 就是最后送 入显示器的数据。

  如上所述如果直接按公式编程的话,假设图像的分辨率为 800*600 ,对它进行 gamma 校正,需要执行 48 万个浮点数乘法、除法和指数运算。效率太低,根本达不到实时的效果。

  针对上述情况,提出了一种快速算法,如果能够确知图像的像素取值范围 , 例如 , 0 ~ 255 之间的整数 , 则图像中任何一个像素值只能 是 0 到 255 这 256 个整数中的某一个 ; 在 gamma 值 已知的情况下 ,0 ~ 255 之间的任一整数 , 经过“归一 化、预补偿、反归一化”操作后 , 所对应的结果是唯一的 , 并且也落在 0 ~ 255 这个范围内。

  如前例 , 已知 gamma 值为 2. 2 , 像素 A 的原始值是 200 , 就可求得 经 gamma 校正后 A 对应的预补偿值为 228 。基于上述原理 , 我们只需为 0 ~ 255 之间的每个整数执行一次预补偿操作 , 将其对应的预补偿值存入一个预先建立的 gamma 校正查找表 (LUT:Look Up Table) , 就可以使用该表对任何像素值在 0 ~ 255 之 间的图像进行 gamma 校正。

代码语言:javascript复制
#include <iostream>  
#include <opencv2corecore.hpp>  
#include <opencv2highguihighgui.hpp>  
#include <opencv2imgprocimgproc.hpp>  
#include<cmath>
using namespace cv;
 
Mat gammaTransform(Mat &srcImage, float kFactor)
{
	
	unsigned char LUT[256];
	for (int i = 0; i < 256; i  )
	{
		float f = (i   0.5f) / 255;
		f = (float)(pow(f, kFactor));
		LUT[i] = saturate_cast<uchar>(f*255.0f - 0.5f);
	}
	Mat resultImage = srcImage.clone();
	
	if (srcImage.channels() == 1)
	{
		
		MatIterator_<uchar> iterator = resultImage.begin<uchar>();
		MatIterator_<uchar> iteratorEnd = resultImage.end<uchar>();
		for (; iterator != iteratorEnd; iterator  )
		{
			*iterator = LUT[(*iterator)];
		}
	}
	else
	{
		
		
		MatIterator_<Vec3b> iterator = resultImage.begin<Vec3b>();
		MatIterator_<Vec3b> iteratorEnd = resultImage.end<Vec3b>();
		for (; iterator != iteratorEnd; iterator  )
		{
			(*iterator)[0] = LUT[((*iterator)[0])];//b
			(*iterator)[1] = LUT[((*iterator)[1])];//g
			(*iterator)[2] = LUT[((*iterator)[2])];//r
		}
	}
	return resultImage;
}
int main()
{
	Mat srcImage = imread("lakeWater.jpg");
	if (!srcImage.data)
	{
		printf("could not load image...n");
		return -1;
	}
	//取两种不同的gamma值
	float gamma1 = 3.33f;
	float gamma2 = 0.33f;
	float kFactor1 = 1 / gamma1;
	float kFactor2 = 1 / gamma2;
	Mat result1 = gammaTransform(srcImage, kFactor1);
	Mat result2 = gammaTransform(srcImage, kFactor2);
	imshow("srcImage", srcImage);
	imshow("res1", result1);
	imshow("res2", result2);
	waitKey(0);
	return 0;
}

参考和引用博客:https://www.cnblogs.com/qiqibaby/p/5325193.html

https://blog.csdn.net/linqianbi/article/details/78617615

0 人点赞