最近在测试一些通用模型 项目,包括:CLUE(tf pytorch),bert4keras(keras), Kashgari(keras tf)等。其中如果要部署的话,就有tensorflow-serving和flask的选择了。 这里刚好有一个非常好的实战例子,基于tensorflow 1.x的,比较全面。
文章目录
- 1 安装 TensorFlow Serving
- 2 keras-H5格式转变为tensorflow-pb 模型热更新
- 2.1 keras-H5格式转变为tensorflow-pb
- 2.2 热更新
- 3 启动tensorflow_model_server
- 4 测试 TensorFlow Serving 服务
- 5 为什么需要 Flask 服务
- 6 ts flask 一键自动部署
- 7 flask ts的测试
参考博客:Deploying Keras models using TensorFlow Serving and Flask 中文版:使用 TensorFlow Serving 和 Flask 部署 Keras 模型 github:keras-and-tensorflow-serving 官方教程: TensorFlow Serving
具体细节直接看教程,来看几个关键内容。
1 安装 TensorFlow Serving
有几种启动ts的方式,docker
也有tensorflow_model_server
,笔者觉得后者比较省力。
$ apt install curl
$ echo "deb [arch=amd64] http://storage.googleapis.com/tensorflow-serving-apt stable tensorflow-model-server tensorflow-model-server-universal" | sudo tee /etc/apt/sources.list.d/tensorflow-serving.list && curl https://storage.googleapis.com/tensorflow-serving-apt/tensorflow-serving.release.pub.gpg | sudo apt-key add -
$ apt-get update
$ apt-get install tensorflow-model-server
$ tensorflow_model_server --version
TensorFlow ModelServer: 1.10.0-dev
TensorFlow Library: 1.11.0
$ python --version
Python 3.6.6
从github:keras-and-tensorflow-serving中把代码都拉下来以备后用。
其中,
代码语言:javascript复制(tensorflow) ubuntu@Himanshu:~/Desktop/Medium/keras-and-tensorflow-serving$ tree -c
└── keras-and-tensorflow-serving
├── README.md
├── my_image_classifier
│ └── 1
│ ├── saved_model.pb
│ └── variables
│ ├── variables.data-00000-of-00001
│ └── variables.index
├── test_images
│ ├── car.jpg
│ └── car.png
├── flask_server
│ ├── app.py
│ ├── flask_sample_request.py
└── scripts
├── download_inceptionv3_model.py
├── inception.h5
├── auto_cmd.py
├── export_saved_model.py
├── imagenet_class_index.json
└── serving_sample_request.py
6 directories, 15 files
还有一种就是docker 部署的方式:
代码语言:javascript复制sudo nvidia-docker run -p 8500:8500
-v /home/projects/resnet/weights/:/models
--name resnet50
-itd --entrypoint=tensorflow_model_server tensorflow/serving:2.0.0-gpu
--port=8500 --per_process_gpu_memory_fraction=0.5
--enable_batching=true --model_name=resnet --model_base_path=/models/season &
参考:TensorFlow Serving Docker Tornado机器学习模型生产级快速部署
2 keras-H5格式转变为tensorflow-pb 模型热更新
2.1 keras-H5格式转变为tensorflow-pb
详见 export_saved_model.py
import tensorflow as tf
# The export path contains the name and the version of the model
tf.keras.backend.set_learning_phase(0) # Ignore dropout at inference
model = tf.keras.models.load_model('./inception.h5')
export_path = '../my_image_classifier/1'
# Fetch the Keras session and save the model
# The signature definition is defined by the input and output tensors
# And stored with the default serving key
with tf.keras.backend.get_session() as sess:
tf.saved_model.simple_save(
sess,
export_path,
inputs={'input_image': model.input},
outputs={t.name: t for t in model.outputs})
其中,尤其要注意{'input_image': model.input}
,后面ts启动之后,输入给ts的内容要与这个相同。
如果你的tf版本是2.0以上,那么model.save()
的时候就可以直接选择格式save_format='tf'
:
from keras import backend as K
from keras.models import load_model
import tensorflow as tf
# 首先使用tf.keras的load_model来导入模型h5文件
model_path = 'v7_resnet50_19-0.9068-0.8000.h5'
model = tf.keras.models.load_model(model_path, custom_objects=dependencies)
model.save('models/resnet/', save_format='tf') # 导出tf格式的模型文件
注意,这里要使用tf.keras.models.load_model
来导入模型,不能使用keras.models.load_model
,只有tf.keras.models.load_model
能导出成tfs所需的模型文件。
以往导出keras模型需要写一大段定义builder的代码,如文章《keras、tensorflow serving踩坑记》 的那样,现在只需使用简单的model.save就可以导出了。
2.2 热更新
TensorFlow Serving 支持热更新模型,其典型的模型文件夹结构如下:
代码语言:javascript复制/saved_model_files
/1 # 版本号为1的模型文件
/assets
/variables
saved_model.pb
...
/N # 版本号为N的模型文件
/assets
/variables
saved_model.pb
上面 1~N 的子文件夹代表不同版本号的模型。 当指定 --model_base_path 时,只需要指定根目录的 绝对地址 (不是相对地址)即可。 例如,如果上述文件夹结构存放在 home/snowkylin 文件夹内,则 --model_base_path 应当设置为 home/snowkylin/saved_model_files (不附带模型版本号)。 TensorFlow Serving 会自动选择版本号最大的模型进行载入。
我们可以这样做:
- 在新的 keras 模型上运行相同的脚本。
- 在 export_saved_model.py 中更新
export_path = ‘../my_image_classifier/1’
为export_path = ‘../my_image_classifier/2’
。
TensorFlow Serving 会自动检测出 my_image_classifier 目录下模型的新版本,并在服务器中更新它。
3 启动tensorflow_model_server
代码语言:javascript复制tensorflow_model_server
--rest_api_port=端口号(如8501)
--model_name=模型名
--model_base_path="SavedModel格式模型的文件夹绝对地址(不含版本号)"
文中的案例是图像分类:
代码语言:javascript复制tensorflow_model_server --model_base_path=/home/ubuntu/Desktop/Medium/keras-and-tensorflow-serving/my_image_classifier --rest_api_port=9000 --model_name=ImageClassifier
- –rest_api_port:TensorFlow Serving 会在 8500 端口启动一个 gRPC ModelServer,并且 RESET API 可在 9000 端口调用。
- --model_name:这是你用于发送 POST 请求的服务器的名称。你可以输入任何名称。
如果成功了之后:
代码语言:javascript复制2018-02-08 16:28:02.641662: I tensorflow_serving/model_servers/main.cc:149] Building single TensorFlow model file config: model_name: voice model_base_path: /home/yu/workspace/test/test_model/
2018-02-08 16:28:02.641917: I tensorflow_serving/model_servers/server_core.cc:439] Adding/updating models.
2018-02-08 16:28:02.641976: I tensorflow_serving/model_servers/server_core.cc:490] (Re-)adding model: voice
2018-02-08 16:28:02.742740: I tensorflow_serving/core/basic_manager.cc:705] Successfully reserved resources to load servable {name: voice version: 1}
2018-02-08 16:28:02.742800: I tensorflow_serving/core/loader_harness.cc:66] Approving load for servable version {name: voice version: 1}
2018-02-08 16:28:02.742815: I tensorflow_serving/core/loader_harness.cc:74] Loading servable version {name: voice version: 1}
2018-02-08 16:28:02.742867: I external/org_tensorflow/tensorflow/contrib/session_bundle/bundle_shim.cc:360] Attempting to load native SavedModelBundle in bundle-shim from: /home/yu/workspace/test/test_model/1
2018-02-08 16:28:02.742906: I external/org_tensorflow/tensorflow/cc/saved_model/loader.cc:236] Loading SavedModel from: /home/yu/workspace/test/test_model/1
2018-02-08 16:28:02.755299: I external/org_tensorflow/tensorflow/core/platform/cpu_feature_guard.cc:137] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
2018-02-08 16:28:02.795329: I external/org_tensorflow/tensorflow/cc/saved_model/loader.cc:155] Restoring SavedModel bundle.
2018-02-08 16:28:02.820146: I external/org_tensorflow/tensorflow/cc/saved_model/loader.cc:190] Running LegacyInitOp on SavedModel bundle.
2018-02-08 16:28:02.832832: I external/org_tensorflow/tensorflow/cc/saved_model/loader.cc:284] Loading SavedModel: success. Took 89481 microseconds.
2018-02-08 16:28:02.834804: I tensorflow_serving/core/loader_harness.cc:86] Successfully loaded servable version {name: voice version: 1}
2018-02-08 16:28:02.836855: I tensorflow_serving/model_servers/main.cc:290] Running ModelServer at 0.0.0.0:8500 ...
4 测试 TensorFlow Serving 服务
脚本 serving_sample_request.py
向 TensorFlow Serving 服务发送一个 POST 请求。
其中,
服务器 URI: http://服务器地址:端口号/v1/models/模型名:predict
请求内容:
{
"signature_name": "需要调用的函数签名(Sequential模式不需要)",
"instances": 输入数据
}
回复为:
代码语言:javascript复制{
"predictions": 返回值
}
代码语言:javascript复制import argparse
import json
import numpy as np
import requests
from keras.applications import inception_v3
from keras.preprocessing import image
# Argument parser for giving input image_path from command line
# ap = argparse.ArgumentParser()
# ap.add_argument("-i", "--image", required=True,
# help="path of the image")
# args = vars(ap.parse_args())
image_path = 'test_images/car.png'
# Preprocessing our input image
img = image.img_to_array(image.load_img(image_path, target_size=(224, 224))) / 255.
# this line is added because of a bug in tf_serving(1.10.0-dev)
img = img.astype('float16')
payload = {
"instances": [{'input_image': img.tolist()}]
}
# sending post request to TensorFlow Serving server
r = requests.post('http://localhost:9000/v1/models/ImageClassifier:predict', json=payload)
pred = json.loads(r.content.decode('utf-8'))
# Decoding the response
# decode_predictions(preds, top=5) by default gives top 5 results
# You can pass "top=10" to get top 10 predicitons
print(json.dumps(inception_v3.decode_predictions(np.array(pred['predictions']))[0]))
输出的结果为:
代码语言:javascript复制Downloading data from https://storage.googleapis.com/download.tensorflow.org/data/imagenet_class_index.json
40960/35363 [==================================] - 1s 20us/step
[["n04285008", "sports_car", 0.998413682], ["n04037443", "racer", 0.00140099635], ["n03459775", "grille", 0.000160793832], ["n02974003", "car_wheel", 9.57861539e-06], ["n03100240", "convertible", 6.01583724e-06]]
5 为什么需要 Flask 服务
这里只是截取一下ts flask
联合使用的好处。
如你所见,我们已经在 serving_sample_request.py (前端调用者)执行了一些图像预处理步骤。以下是在 TensorFlow serving 服务层之上创建 Flask 服务的原因:
- 当我们向前端团队提供 API 时,我们需要确保他们不被预处理的技术细节淹没。
- 我们可能并不总是有 Python 后段服务器(比如:node.js 服务器),因此使用 numpy 和 keras 库进行预处理可能会很麻烦。
- 如果我们打算提供多个模型,那么我们不得不创建多个 TensorFlow Serving 服务并且在前端代码添加新的 URL。但 Flask 服务会保持域 URL 相同,而我们只需要添加一个新的路由(一个函数)。
- 可以在 Flask 应用中执行基于订阅的访问、异常处理和其他任务。
Flask 服务只需要一个flask_server/app.py
文件。
import base64
import json
from io import BytesIO
import numpy as np
import requests
from flask import Flask, request, jsonify
from keras.applications import inception_v3
from keras.preprocessing import image
# from flask_cors import CORS
app = Flask(__name__)
# Uncomment this line if you are making a Cross domain request
# CORS(app)
# Testing URL
@app.route('/hello/', methods=['GET', 'POST'])
def hello_world():
return 'Hello, World!'
@app.route('/imageclassifier/predict/', methods=['POST'])
def image_classifier():
# Decoding and pre-processing base64 image
img = image.img_to_array(image.load_img(BytesIO(base64.b64decode(request.form['b64'])),
target_size=(224, 224))) / 255.
# this line is added because of a bug in tf_serving(1.10.0-dev)
img = img.astype('float16')
# Creating payload for TensorFlow serving request
payload = {
"instances": [{'input_image': img.tolist()}]
}
# Making POST request
r = requests.post('http://localhost:9000/v1/models/ImageClassifier:predict', json=payload)
# Decoding results from TensorFlow Serving server
pred = json.loads(r.content.decode('utf-8'))
# Returning JSON response to the frontend
return jsonify(inception_v3.decode_predictions(np.array(pred['predictions']))[0])
6 ts flask 一键自动部署
auto_cmd.py
是一个用于自动启动和停止这两个服务(TensorFlow Serving 和 Falsk)的脚本。你可以修改这个脚本适用两个以上的服务。
import os
import signal
import subprocess
# Making sure to use virtual environment libraries
activate_this = "/home/ubuntu/tensorflow/bin/activate_this.py"
exec(open(activate_this).read(), dict(__file__=activate_this))
# Change directory to where your Flask's app.py is present
os.chdir("/home/ubuntu/Desktop/Medium/keras-and-tensorflow-serving/flask_server")
tf_ic_server = ""
flask_server = ""
try:
tf_ic_server = subprocess.Popen(["tensorflow_model_server "
"--model_base_path=/home/ubuntu/Desktop/Medium/keras-and-tensorflow-serving/my_image_classifier "
"--rest_api_port=9000 --model_name=ImageClassifier"],
stdout=subprocess.DEVNULL,
shell=True,
preexec_fn=os.setsid)
print("Started TensorFlow Serving ImageClassifier server!")
flask_server = subprocess.Popen(["export FLASK_ENV=development && flask run --host=0.0.0.0"],
stdout=subprocess.DEVNULL,
shell=True,
preexec_fn=os.setsid)
print("Started Flask server!")
while True:
print("Type 'exit' and press 'enter' OR press CTRL C to quit: ")
in_str = input().strip().lower()
if in_str == 'q' or in_str == 'exit':
print('Shutting down all servers...')
os.killpg(os.getpgid(tf_ic_server.pid), signal.SIGTERM)
os.killpg(os.getpgid(flask_server.pid), signal.SIGTERM)
print('Servers successfully shutdown!')
break
else:
continue
except KeyboardInterrupt:
print('Shutting down all servers...')
os.killpg(os.getpgid(tf_ic_server.pid), signal.SIGTERM)
os.killpg(os.getpgid(flask_server.pid), signal.SIGTERM)
print('Servers successfully shutdown!')
第 10 行中的路径使其指向你的 app.py 所在目录。你可能还需要修改第 6 行使其指向你的虚拟环境的 bin。
7 flask ts的测试
代码语言:javascript复制# importing the requests library
import argparse
import base64
import requests
# defining the api-endpoint
API_ENDPOINT = "http://localhost:5000/imageclassifier/predict/"
# taking input image via command line
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True,
help="path of the image")
args = vars(ap.parse_args())
image_path = args['image']
b64_image = ""
# Encoding the JPG,PNG,etc. image to base64 format
with open(image_path, "rb") as imageFile:
b64_image = base64.b64encode(imageFile.read())
# data to be sent to api
data = {'b64': b64_image}
# sending post request and saving response as response object
r = requests.post(url=API_ENDPOINT, data=data)
# extracting the response
print("{}".format(r.text))
输出:
代码语言:javascript复制$ python flask_sample_request.py -i ../test_images/car.png
[
[
"n04285008",
"sports_car",
0.998414
],
[
"n04037443",
"racer",
0.00140099
],
[
"n03459775",
"grille",
0.000160794
],
[
"n02974003",
"car_wheel",
9.57862e-06
],
[
"n03100240",
"convertible",
6.01581e-06
]
]
如果需要处理跨域 HTTP 请求,需要在 app.py 中启用 Flask-CORS。