在写 PyTorch 代码时,我们会发现在 torch.nn.xxx
和 torch.nn.functional.xxx
中有一些功能重复的操作,比如卷积、激活、池化。这些操作有什么不同?各有什么用处?
首先可以观察源码:
eg:torch.nn.Conv2d
eg:torch.nn.functional
从中,我们可以发现,nn.Conv2d 是一个类,而 nn.functional.conv2d是一个函数。
换言之:
- nn.Module 实现的 layer 是由 class Layer(nn.Module) 定义的特殊类
- nn.functional 中的函数更像是纯函数,由 def function(input) 定义
此外:
- 两者的调用方式不同:调用 nn.xxx 时要先在里面传入超参数,然后再将数据以函数调用的方式传入 nn.xxx
# torch.nn
inputs = torch.randn(64, 3, 244, 244)
self.conv = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, padding=1)
outputs = self.conv(inputs)
# torch.nn.functional 需要同时传入数据和 weight,bias等参数
inputs = torch.randn(64, 3, 244, 244)
weight = torch.randn(64, 3, 3, 3)
bias = torch.randn(64)
outputs = nn.functinoal.conv2d(inputs, weight, bias, padding=1)
- nn.xxx 能够放在 nn.Sequential里,而 nn.functional.xxx 就不行
- nn.functional.xxx 需要自己定义 weight,每次调用时都需要手动传入 weight,而 nn.xxx 则不用
import torch
import torch.nn as nn
import torch.nn.functional as F
# torch.nn 定义的CNN
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv_1 = nn.Conv2d(1, 16, krenel_size=5, padding=0)
self.relu_1 = nn.ReLU(inplace=True)
self.maxpool_1 = nn.MaxPool2d(kernel_size=2)
self.conv_2 = nn.Conv2d(16, 32, krenel_size=5, padding=0)
self.relu_2 = nn.ReLU(inplace=True)
self.maxpool_2 = nn.MaxPool2d(kernel_size=2)
self.linear = nn.Linear(4*4*32, 10)
def forward(self, x):
x = x.view(x.size(0), -1)
out = self.maxpool_1(self.relu_1(self.conv_1(x)))
out = self.maxpool_2(self.relu_2(self.conv_2(out)))
out = self.linear(out.view(x.size(0), -1))
return out
# torch.nn.functional 定义一个相同的CNN
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv_1_weight = nn.Parameter(torch.randn(16, 1, 5, 5))
self.bias_1_weight = nn.Parameter(torch.randn(16))
self.conv_2_weight = nn.Parameter(torch.randn(32, 16, 5, 5))
self.bias_2_weight = nn.Parameter(torch.randn(32))
self.linear_weight = nn.Parameter(torch.randn(4 * 4 * 32, 10))
self.bias_weight = nn.Parameter(torch.randn(10))
def forward(self, x):
x = x.view(x.size(0), -1)
out = F.conv2d(x, self.conv_1_weight, self.bias_1_weight)
out = F.conv2d(out, self.conv_2_weight, self.bias_2_weight)
out = F.linear(out.view(x.size(0), -1), self.linear_weight, self.bias_weight)
- 在使用Dropout时,推荐使用 nn.xxx。因为一般只有训练时才使用 Dropout,在验证或测试时不需要使用 Dropout。使用 nn.Dropout时,如果调用 model.eval() ,模型的 Dropout 层都会关闭;但如果使用 nn.functional.dropout,在调用 model.eval() 时,不会关闭 Dropout。
- 当我们想要自定义卷积核时,是不能使用
torch.nn.ConvNd
的,因为它里面的权重都是需要学习的参数,没有办法自行定义。但是,我们可以使用torch.nn.functional.conv2d
。