章节
- 队列的特性 & 图示
- 数组队列简介与实现
- 循环队列简介与实现
队列的特性 & 图示
队列是一种FIFO的线性数据结构
数组队列简介与实现
实现一个数组队列
代码语言:javascript复制Queue
def enqueue(val): # 入队列 从队尾入队列
def dequeue(): # 出队列 从队首出队列
def get_front(): # 获取 队首元素
def get_size(): # 获取队列元素个数
def is_empty(): # 队列是否为空
ArrayQueue - 基于动态数组实现
代码语言:javascript复制#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
# @Time : 2020/2/4 下午4:58
# @Author : bofengliu@tencent.com
# @Site :
# @File : queue.py
# @Software: PyCharm
# 队列 , 底层同样使用动态数组
# 缺陷: 使用动态数组实现的队列,dequeue 时间复杂度是 O(n)
"""
from array.Array import Array
class ArrayQueue:
def __init__(self, capacity=None):
if capacity is None:
self.array = Array()
else:
self.array = Array(capacity)
def enqueue(self, val):
"""
队尾入队
:param val:
:return:
"""
self.array.add_last(val)
def dequeue(self):
"""
队首出队
:return:
"""
return self.array.remove_first()
def get_front(self):
return self.array.get_first()
def get_size(self):
return self.array.get_size()
def is_empty(self):
return self.array.is_empty()
def to_string(self):
res_queue_arr = []
res_queue_arr.append('Queue: front [')
for i in range(0, self.get_size()):
val = self.array.get(i)
if isinstance(val, int):
val = str(val)
res_queue_arr.append(val)
if i != self.get_size() - 1:
res_queue_arr.append(',')
res_queue_arr.append('] tail')
return "".join(res_queue_arr)
if __name__ == '__main__':
arrayQueue = ArrayQueue()
for i in range(0, 10):
arrayQueue.enqueue(i)
print(arrayQueue.to_string())
arrayQueue.dequeue()
print(arrayQueue.to_string())
arrayQueue.enqueue(1)
print(arrayQueue.to_string())
arrayQueue.enqueue(12)
print(arrayQueue.to_string())
循环队列简介与实现
数组队列 dequeue 的时间复杂度是 o(n) ,因每次删除队首元素,后面的元素都得进行前移操作 使用循环队列可以将dequeue的时间复杂度降至o(1)
LoopQueue - 基于python list 实现
代码语言:javascript复制#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
# @Time : 2020/2/5 上午11:29
# @Author : bofengliu@tencent.com
# @Site :
# @File : LoopQueue.py
# @Software: PyCharm
# 不使用动态数组、自己从底层实现循环队列
# 先实现查询、后实现增、删、改, 取余成环
"""
class LoopQueue:
def __init__(self, capacity=None):
if capacity is None:
self._data = [None] * 10
else:
self._data = [None] * (capacity 1)
# 队首索引
self._front = 0
# 队尾索引
self._tail = 0
# 元素个数
self._size = 0
def get_capacity(self):
# capacity 浪费一个空间,用来区分 队列空 & 队列满
return len(self._data) - 1
def is_empty(self):
return self._front == self._tail
def get_size(self):
return self._size
def enqueue(self, val):
# 判断队列是否满, 取余,让队列索引循环起来
if (self._tail 1) % len(self._data) == self._front:
self.resize(self.get_capacity() * 2)
self._data[self._tail] = val
self._tail = (self._tail 1) % len(self._data)
self._size = 1
def dequeue(self):
if self._tail == self._front:
raise (Exception, 'cannot dequeue from an empty queue.')
ret = self._data[self._front]
self._data[self._front] = None
self._front = (self._front 1) % len(self._data)
self._size -= 1
if self._size == self.get_capacity() / 4:
self.resize(self.get_capacity() / 2)
return ret
def get_front(self):
if self.is_empty():
raise (Exception, 'queue is empty')
return self._data[self._front]
def resize(self, new_capacity):
new_data = [None] * (new_capacity 1)
for i in range(0, self._size):
# 原始队列队首元素放在新队列的队首
new_data[i] = self._data[(i self._front) % len(self._data)]
self._data = new_data
self._front = 0
self._tail = self._size
def to_string(self):
res_queue_arr = []
res_queue_arr.append('Queue: size = %d, capacity = %d front [' % (self._size, self.get_capacity()))
index = self._front
while index != self._tail:
val = self._data[index]
if isinstance(val, int):
val = str(val)
res_queue_arr.append(val)
if index != self._tail - 1:
res_queue_arr.append(',')
index = (index 1) % len(self._data)
res_queue_arr.append('] tail')
return "".join(res_queue_arr)
if __name__ == '__main__':
loopQueue = LoopQueue(1)
print(loopQueue.to_string())
for i in range(0, 5):
loopQueue.enqueue(i)
print(loopQueue.to_string())
print(loopQueue.to_string())
loopQueue.dequeue()
print(loopQueue.to_string())
loopQueue.dequeue()
print(loopQueue.to_string())