前面,我们多次介绍了关于miRNA的靶向基因的查询工具,分别是:
- microRNAs靶基因数据库哪家强
- 使用miRNAtap数据源提取miRNA的预测靶基因结果
- 对miRNA进行go和kegg等功能数据库数据库注释
但是不少粉丝表示不明白这些东西是做什么的,现在就给一个示例,文章是发表于2017的纯粹生物信息学数据挖掘的:Identification of miRNA‐mRNA crosstalk in laryngeal squamous cell carcinoma,其实你把癌症替换成为TCGA的另外33种癌症,都是类似的分析策略,类似的写作思路。
这样的文章,你直接定位到材料与方法即可:
- The DEMs targeted by DEMIs were identified and the negative correlation between DEMs and DEMIs was subjected to visualization.
- The potential functions of DEMs targeted by DEMIs were annotated in Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database.
- A total of 663 dysregulated DEMs (449 upregulated and 214 downregulated) and 33 DEMIs (24 upregulated and 8 downregulated) were identified in LSCC compared with normal controls.
- 502 negative correlations between DEMIs and DEMs were identified and subjected to construct interaction network.
分别对mRNA和miRNA的表达矩阵,进行差异分析,分别拿到上下调的mRNA和miRNA的集合。然后使用miRWalk2来查询mRNA和miRNA的调控关系,输入数据是32个有差异的miRNA,预测到的这些靶mRNA,跟前面的差异MRNA进行交集,最后剩下502个mRNA和miRNA的调控关系。全文主要是差异分析的基因列表,热图以及mRNA和miRNA的的调控网络图。
我们介绍的关于miRNA的靶向基因的查询工具,就在这里发挥了作用!
miRNA的靶向基因的查询工具
也就是说,差异分析单纯的作为数据挖掘的卖点已经不够了,早先可以走PPI网络加上hub基因路线,现在可以走miRNA及其靶基因网络路线。每个miRNA调控的基因,就可以网络图可视化如下:
就这么简单,赶紧用起来吧!