14.4 Bloom Filter 的对接
首先回顾一下 Scrapy-Redis 的去重机制。Scrapy-Redis 将 Request 的指纹存储到了 Redis 集合中,每个指纹的长度为 40,例如 27adcc2e8979cdee0c9cecbbe8bf8ff51edefb61 就是一个指纹,它的每一位都是 16 进制数。
我们计算一下用这种方式耗费的存储空间。每个十六进制数占用 4 b,1 个指纹用 40 个十六进制数表示,占用空间为 20 B,1 万个指纹即占用空间 200 KB,1 亿个指纹占用 2 GB。当爬取数量达到上亿级别时,Redis 的占用的内存就会变得很大,而且这仅仅是指纹的存储。Redis 还存储了爬取队列,内存占用会进一步提高,更别说有多个 Scrapy 项目同时爬取的情况了。当爬取达到亿级别规模时,Scrapy-Redis 提供的集合去重已经不能满足我们的要求。所以我们需要使用一个更加节省内存的去重算法 Bloom Filter。
1. 了解 BloomFilter
Bloom Filter,中文名称叫作布隆过滤器,是 1970 年由 Bloom 提出的,它可以被用来检测一个元素是否在一个集合中。Bloom Filter 的空间利用效率很高,使用它可以大大节省存储空间。Bloom Filter 使用位数组表示一个待检测集合,并可以快速地通过概率算法判断一个元素是否存在于这个集合中。利用这个算法我们可以实现去重效果。
本节我们来了解 Bloom Filter 的基本算法,以及 Scrapy-Redis 中对接 Bloom Filter 的方法。
2. BloomFilter 的算法
在 Bloom Filter 中使用位数组来辅助实现检测判断。在初始状态下,我们声明一个包含 m 位的位数组,它的所有位都是 0,如图 14-7 所示。
图 14-7 初始位数组
现在我们有了一个待检测集合,我们表示为 S={x1, x2, ..., xn},我们接下来需要做的就是检测一个 x 是否已经存在于集合 S 中。在 BloomFilter 算法中首先使用 k 个相互独立的、随机的哈希函数来将这个集合 S 中的每个元素 x1、x2、...、xn 映射到这个长度为 m 的位数组上,哈希函数得到的结果记作位置索引,然后将位数组该位置索引的位置 1。例如这里我们取 k 为 3,即有三个哈希函数,x1 经过三个哈希函数映射得到的结果分别为 1、4、8,x2 经过三个哈希函数映射得到的结果分别为 4、6、10,那么就会将位数组的 1、4、6、8、10 这五位置 1,如图 14-8 所示:
图 14-8 映射后位数组
这时如果再有一个新的元素 x,我们要判断 x 是否属于 S 这个集合,我们便会将仍然用 k 个哈希函数对 x 求映射结果,如果所有结果对应的位数组位置均为 1,那么我们就认为 x 属于 S 这个集合,否则如果有一个不为 1,则 x 不属于 S 集合。
例如一个新元素 x 经过三个哈希函数映射的结果为 4、6、8,对应的位置均为 1,则判断 x 属于 S 这个集合。如果结果为 4、6、7,7 对应的位置为 0,则判定 x 不属于 S 这个集合。
注意这里 m、n、k 满足的关系是 m>nk,也就是说位数组的长度 m 要比集合元素 n 和哈希函数 k 的乘积还要大。
这样的判定方法很高效,但是也是有代价的,它可能把不属于这个集合的元素误认为属于这个集合,我们来估计一下它的错误率。当集合 S={x1, x2,…, xn} 的所有元素都被 k 个哈希函数映射到 m 位的位数组中时,这个位数组中某一位还是 0 的概率是:
因为哈希函数是随机的,所以任意一个哈希函数选中这一位的概率为 1/m,那么 1-1/m 就代表哈希函数一次没有选中这一位的概率,要把 S 完全映射到 m 位数组中,需要做 kn 次哈希运算,所以最后的概率就是 1-1/m 的 kn 次方。
一个不属于 S 的元素 x 如果要被误判定为在 S 中,那么这个概率就是 k 次哈希运算得到的结果对应的位数组位置都为 1,所以误判概率为:
根据:
可以将误判概率转化为:
在给定 m、n 时,可以求出使得 f 最小化的 k 值为:
在这里将误判概率归纳如下:
表 14-1 误判概率
m/n | 最优 k | k=1 | k=2 | k=3 | k=4 | k=5 | k=6 | k=7 | k=8 |
---|---|---|---|---|---|---|---|---|---|
2 | 1.39 | 0.393 | 0.400 | ||||||
3 | 2.08 | 0.283 | 0.237 | 0.253 | |||||
4 | 2.77 | 0.221 | 0.155 | 0.147 | 0.160 | ||||
5 | 3.46 | 0.181 | 0.109 | 0.092 | 0.092 | 0.101 | |||
6 | 4.16 | 0.154 | 0.0804 | 0.0609 | 0.0561 | 0.0578 | 0.0638 | ||
7 | 4.85 | 0.133 | 0.0618 | 0.0423 | 0.0359 | 0.0347 | 0.0364 | ||
8 | 5.55 | 0.118 | 0.0489 | 0.0306 | 0.024 | 0.0217 | 0.0216 | 0.0229 | |
9 | 6.24 | 0.105 | 0.0397 | 0.0228 | 0.0166 | 0.0141 | 0.0133 | 0.0135 | 0.0145 |
10 | 6.93 | 0.0952 | 0.0329 | 0.0174 | 0.0118 | 0.00943 | 0.00844 | 0.00819 | 0.00846 |
11 | 7.62 | 0.0869 | 0.0276 | 0.0136 | 0.00864 | 0.0065 | 0.00552 | 0.00513 | 0.00509 |
12 | 8.32 | 0.08 | 0.0236 | 0.0108 | 0.00646 | 0.00459 | 0.00371 | 0.00329 | 0.00314 |
13 | 9.01 | 0.074 | 0.0203 | 0.00875 | 0.00492 | 0.00332 | 0.00255 | 0.00217 | 0.00199 |
14 | 9.7 | 0.0689 | 0.0177 | 0.00718 | 0.00381 | 0.00244 | 0.00179 | 0.00146 | 0.00129 |
15 | 10.4 | 0.0645 | 0.0156 | 0.00596 | 0.003 | 0.00183 | 0.00128 | 0.001 | 0.000852 |
16 | 11.1 | 0.0606 | 0.0138 | 0.005 | 0.00239 | 0.00139 | 0.000935 | 0.000702 | 0.000574 |
17 | 11.8 | 0.0571 | 0.0123 | 0.00423 | 0.00193 | 0.00107 | 0.000692 | 0.000499 | 0.000394 |
18 | 12.5 | 0.054 | 0.0111 | 0.00362 | 0.00158 | 0.000839 | 0.000519 | 0.00036 | 0.000275 |
19 | 13.2 | 0.0513 | 0.00998 | 0.00312 | 0.0013 | 0.000663 | 0.000394 | 0.000264 | 0.000194 |
20 | 13.9 | 0.0488 | 0.00906 | 0.0027 | 0.00108 | 0.00053 | 0.000303 | 0.000196 | 0.00014 |
21 | 14.6 | 0.0465 | 0.00825 | 0.00236 | 0.000905 | 0.000427 | 0.000236 | 0.000147 | 0.000101 |
22 | 15.2 | 0.0444 | 0.00755 | 0.00207 | 0.000764 | 0.000347 | 0.000185 | 0.000112 | 7.46e-05 |
23 | 15.9 | 0.0425 | 0.00694 | 0.00183 | 0.000649 | 0.000285 | 0.000147 | 8.56e-05 | 5.55e-05 |
24 | 16.6 | 0.0408 | 0.00639 | 0.00162 | 0.000555 | 0.000235 | 0.000117 | 6.63e-05 | 4.17e-05 |
25 | 17.3 | 0.0392 | 0.00591 | 0.00145 | 0.000478 | 0.000196 | 9.44e-05 | 5.18e-05 | 3.16e-05 |
26 | 18 | 0.0377 | 0.00548 | 0.00129 | 0.000413 | 0.000164 | 7.66e-05 | 4.08e-05 | 2.42e-05 |
27 | 18.7 | 0.0364 | 0.0051 | 0.00116 | 0.000359 | 0.000138 | 6.26e-05 | 3.24e-05 | 1.87e-05 |
28 | 19.4 | 0.0351 | 0.00475 | 0.00105 | 0.000314 | 0.000117 | 5.15e-05 | 2.59e-05 | 1.46e-05 |
29 | 20.1 | 0.0339 | 0.00444 | 0.000949 | 0.000276 | 9.96e-05 | 4.26e-05 | 2.09e-05 | 1.14e-05 |
30 | 20.8 | 0.0328 | 0.00416 | 0.000862 | 0.000243 | 8.53e-05 | 3.55e-05 | 1.69e-05 | 9.01e-06 |
31 | 21.5 | 0.0317 | 0.0039 | 0.000785 | 0.000215 | 7.33e-05 | 2.97e-05 | 1.38e-05 | 7.16e-06 |
32 | 22.2 | 0.0308 | 0.00367 | 0.000717 | 0.000191 | 6.33e-05 | 2.5e-05 | 1.13e-05 | 5.73e-06 |
表 14-1 中第一列为 m/n 的值,第二列为最优 k 值,其后列为不同 k 值的误判概率,可以看到当 k 值确定时,随着 m/n 的增大,误判概率逐渐变小。当 m/n 的值确定时,当 k 越靠近最优 K 值,误判概率越小。另外误判概率总体来看都是极小的,在容忍此误判概率的情况下,大幅减小存储空间和判定速度是完全值得的。
接下来我们就将 BloomFilter 算法应用到 Scrapy-Redis 分布式爬虫的去重过程中,以解决 Redis 内存不足的问题。
3. 对接 Scrapy-Redis
实现 BloomFilter 时,我们首先要保证不能破坏 Scrapy-Redis 分布式爬取的运行架构,所以我们需要修改 Scrapy-Redis 的源码,将它的去重类替换掉。同时 BloomFilter 的实现需要借助于一个位数组,所以既然当前架构还是依赖于 Redis 的,那么正好位数组的维护直接使用 Redis 就好了。
首先我们实现一个基本的哈希算法,可以实现将一个值经过哈希运算后映射到一个 m 位位数组的某一位上,代码实现如下:
代码语言:javascript复制class HashMap(object):
def __init__(self, m, seed):
self.m = m
self.seed = seed
def hash(self, value):
"""
Hash Algorithm
:param value: Value
:return: Hash Value
"""
ret = 0
for i in range(len(value)):
ret = self.seed * ret ord(value[i])
return (self.m - 1) & ret
在这里新建了一个 HashMap 类,构造函数传入两个值,一个是 m 位数组的位数,另一个是种子值 seed,不同的哈希函数需要有不同的 seed,这样可以保证不同的哈希函数的结果不会碰撞。
在 hash() 方法的实现中,value 是要被处理的内容,在这里我们遍历了该字符的每一位并利用 ord() 方法取到了它的 ASCII 码值,然后混淆 seed 进行迭代求和运算,最终会得到一个数值。这个数值的结果就由 value 和 seed 唯一确定,然后我们再将它和 m 进行按位与运算,即可获取到 m 位数组的映射结果,这样我们就实现了一个由字符串和 seed 来确定的哈希函数。当 m 固定时,只要 seed 值相同,就代表是同一个哈希函数,相同的 value 必然会映射到相同的位置。所以如果我们想要构造几个不同的哈希函数,只需要改变其 seed 就好了,以上便是一个简易的哈希函数的实现。
接下来我们再实现 BloomFilter,BloomFilter 里面需要用到 k 个哈希函数,所以在这里我们需要对这几个哈希函数指定相同的 m 值和不同的 seed 值,在这里构造如下:
代码语言:javascript复制BLOOMFILTER_HASH_NUMBER = 6
BLOOMFILTER_BIT = 30
class BloomFilter(object):
def __init__(self, server, key, bit=BLOOMFILTER_BIT, hash_number=BLOOMFILTER_HASH_NUMBER):
"""
Initialize BloomFilter
:param server: Redis Server
:param key: BloomFilter Key
:param bit: m = 2 ^ bit
:param hash_number: the number of hash function
"""
# default to 1 << 30 = 10,7374,1824 = 2^30 = 128MB, max filter 2^30/hash_number = 1,7895,6970 fingerprints
self.m = 1 << bit
self.seeds = range(hash_number)
self.maps = [HashMap(self.m, seed) for seed in self.seeds]
self.server = server
self.key = key
由于我们需要亿级别的数据的去重,即前文介绍的算法中的 n 为 1 亿以上,哈希函数的个数 k 大约取 10 左右的量级,而 m>kn,所以这里 m 值大约保底在 10 亿,由于这个数值比较大,所以这里用移位操作来实现,传入位数 bit,定义 30,然后做一个移位操作 1 << 30,相当于 2 的 30 次方,等于 1073741824,量级也是恰好在 10 亿左右,由于是位数组,所以这个位数组占用的大小就是 2^30b=128MB,而本文开头我们计算过 Scrapy-Redis 集合去重的占用空间大约在 2G 左右,可见 BloomFilter 的空间利用效率之高。
随后我们再传入哈希函数的个数,用它来生成几个不同的 seed,用不同的 seed 来定义不同的哈希函数,这样我们就可以构造一个哈希函数列表,遍历 seed,构造带有不同 seed 值的 HashMap 对象,保存成变量 maps 供后续使用。
另外 server 就是 Redis 连接对象,key 就是这个 m 位数组的名称。
接下来我们就要实现比较关键的两个方法了,一个是判定元素是否重复的方法 exists(),另一个是添加元素到集合中的方法 insert(),实现如下:
代码语言:javascript复制def exists(self, value):
"""
if value exists
:param value:
:return:
"""
if not value:
return False
exist = 1
for map in self.maps:
offset = map.hash(value)
exist = exist & self.server.getbit(self.key, offset)
return exist
def insert(self, value):
"""
add value to bloom
:param value:
:return:
"""
for f in self.maps:
offset = f.hash(value)
self.server.setbit(self.key, offset, 1)
首先我们先看下 insert() 方法,BloomFilter 算法中会逐个调用哈希函数对放入集合中的元素进行运算得到在 m 位位数组中的映射位置,然后将位数组对应的位置置 1,所以这里在代码中我们遍历了初始化好的哈希函数,然后调用其 hash() 方法算出映射位置 offset,再利用 Redis 的 setbit() 方法将该位置 1。
在 exists() 方法中我们就需要实现判定是否重复的逻辑了,方法参数 value 即为待判断的元素,在这里我们首先定义了一个变量 exist,然后遍历了所有哈希函数对 value 进行哈希运算,得到映射位置,然后我们用 getbit() 方法取得该映射位置的结果,依次进行与运算。这样只有每次 getbit() 得到的结果都为 1 时,最后的 exist 才为 True,即代表 value 属于这个集合。如果其中只要有一次 getbit() 得到的结果为 0,即 m 位数组中有对应的 0 位,那么最终的结果 exist 就为 False,即代表 value 不属于这个集合。这样此方法最后的返回结果就是判定重复与否的结果了。
到现在为止 BloomFilter 的实现就已经完成了,我们可以用一个实例来测试一下,代码如下:
代码语言:javascript复制conn = StrictRedis(host='localhost', port=6379, password='foobared')
bf = BloomFilter(conn, 'testbf', 5, 6)
bf.insert('Hello')
bf.insert('World')
result = bf.exists('Hello')
print(bool(result))
result = bf.exists('Python')
print(bool(result))
在这里我们首先定义了一个 Redis 连接对象,然后传递给 BloomFilter,为了避免内存占用过大这里传的位数 bit 比较小,设置为 5,哈希函数的个数设置为 6。
首先我们调用 insert() 方法插入了 Hello 和 World 两个字符串,随后判断了一下 Hello 和 Python 这两个字符串是否存在,最后输出它的结果,运行结果如下:
代码语言:javascript复制True
False
很明显,结果完全没有问题,这样我们就借助于 Redis 成功实现了 BloomFilter 的算法。
接下来我们需要继续修改 Scrapy-Redis 的源码,将它的 dupefilter 逻辑替换为 BloomFilter 的逻辑,在这里主要是修改 RFPDupeFilter 类的 request_seen() 方法,实现如下:
代码语言:javascript复制def request_seen(self, request):
fp = self.request_fingerprint(request)
if self.bf.exists(fp):
return True
self.bf.insert(fp)
return False
首先还是利用 request_fingerprint() 方法获取了 Request 的指纹,然后调用 BloomFilter 的 exists() 方法判定了该指纹是否存在,如果存在,则证明该 Request 是重复的,返回 True,否则调用 BloomFilter 的 insert() 方法将该指纹添加并返回 False,这样就成功利用 BloomFilter 替换了 Scrapy-Redis 的集合去重。
对于 BloomFilter 的初始化定义,我们可以将 init() 方法修改为如下内容:
代码语言:javascript复制def __init__(self, server, key, debug, bit, hash_number):
self.server = server
self.key = key
self.debug = debug
self.bit = bit
self.hash_number = hash_number
self.logdupes = True
self.bf = BloomFilter(server, self.key, bit, hash_number)
其中 bit 和 hash_number 需要使用 from_settings() 方法传递,修改如下:
代码语言:javascript复制@classmethod
def from_settings(cls, settings):
server = get_redis_from_settings(settings)
key = defaults.DUPEFILTER_KEY % {'timestamp': int(time.time())}
debug = settings.getbool('DUPEFILTER_DEBUG', DUPEFILTER_DEBUG)
bit = settings.getint('BLOOMFILTER_BIT', BLOOMFILTER_BIT)
hash_number = settings.getint('BLOOMFILTER_HASH_NUMBER', BLOOMFILTER_HASH_NUMBER)
return cls(server, key=key, debug=debug, bit=bit, hash_number=hash_number)
其中常量的定义 DUPEFILTER_DEBUG 和 BLOOMFILTER_BIT 统一定义在 defaults.py 中,默认如下:
代码语言:javascript复制BLOOMFILTER_HASH_NUMBER = 6
BLOOMFILTER_BIT = 30
到此为止我们就成功实现了 BloomFilter 和 Scrapy-Redis 的对接。
4. 本节代码
本节代码地址为:https://github.com/Python3WebSpider/ScrapyRedisBloomFilter。
5. 使用
为了方便使用,本节的代码已经打包成了一个 Python 包并发布到了 PyPi,链接为:https://pypi.python.org/pypi/scrapy-redis-bloomfilter,因此我们以后如果想使用 ScrapyRedisBloomFilter 直接使用就好了,不需要再自己实现一遍。
我们可以直接使用 Pip 来安装,命令如下:
代码语言:javascript复制pip3 install scrapy-redis-bloomfilter
使用的方法和 Scrapy-Redis 基本相似,在这里说明几个关键配置:
代码语言:javascript复制# 去重类,要使用 BloomFilter 请替换 DUPEFILTER_CLASS
DUPEFILTER_CLASS = "scrapy_redis_bloomfilter.dupefilter.RFPDupeFilter"
# 哈希函数的个数,默认为 6,可以自行修改
BLOOMFILTER_HASH_NUMBER = 6
# BloomFilter 的 bit 参数,默认 30,占用 128MB 空间,去重量级 1 亿
BLOOMFILTER_BIT = 30
DUPEFILTER_CLASS 是去重类,如果要使用 BloomFilter 需要将 DUPEFILTER_CLASS 修改为该包的去重类。
BLOOMFILTER_HASH_NUMBER 是 BloomFilter 使用的哈希函数的个数,默认为 6,可以根据去重量级自行修改。
BLOOMFILTER_BIT 即前文所介绍的 BloomFilter 类的 bit 参数,它决定了位数组的位数,如果 BLOOMFILTER_BIT 为 30,那么位数组位数为 2 的 30 次方,将占用 Redis 128MB 的存储空间,去重量级在 1 亿左右,即对应爬取量级 1 亿左右。如果爬取量级在 10 亿、20 亿甚至 100 亿,请务必将此参数对应调高。
6. 测试
在源代码中附有一个测试项目,放在 tests 文件夹,该项目使用了 Scrapy-RedisBloomFilter 来去重,Spider 的实现如下:
代码语言:javascript复制from scrapy import Request, Spider
class TestSpider(Spider):
name = 'test'
base_url = 'https://www.baidu.com/s?wd='
def start_requests(self):
for i in range(10):
url = self.base_url str(i)
yield Request(url, callback=self.parse)
# Here contains 10 duplicated Requests
for i in range(100):
url = self.base_url str(i)
yield Request(url, callback=self.parse)
def parse(self, response):
self.logger.debug('Response of ' response.url)
在 start_requests() 方法中首先循环 10 次,构造参数为 0-9 的 URL,然后重新循环了 100 次,构造了参数为 0-99 的 URL,那么这里就会包含 10 个重复的 Request,我们运行项目测试一下:
代码语言:javascript复制scrapy crawl test
可以看到最后的输出结果如下:
代码语言:javascript复制{'bloomfilter/filtered': 10,
'downloader/request_bytes': 34021,
'downloader/request_count': 100,
'downloader/request_method_count/GET': 100,
'downloader/response_bytes': 72943,
'downloader/response_count': 100,
'downloader/response_status_count/200': 100,
'finish_reason': 'finished',
'finish_time': datetime.datetime(2017, 8, 11, 9, 34, 30, 419597),
'log_count/DEBUG': 202,
'log_count/INFO': 7,
'memusage/max': 54153216,
'memusage/startup': 54153216,
'response_received_count': 100,
'scheduler/dequeued/redis': 100,
'scheduler/enqueued/redis': 100,
'start_time': datetime.datetime(2017, 8, 11, 9, 34, 26, 495018)}
可以看到最后统计的第一行的结果:
代码语言:javascript复制'bloomfilter/filtered': 10,
这就是 BloomFilter 过滤后的统计结果,可以看到它的过滤个数为 10 个,也就是它成功将重复的 10 个 Reqeust 识别出来了,测试通过。
7. 结语
以上便是 BloomFilter 的原理及对接实现,使用了 BloomFilter 可以大大节省 Redis 内存,在数据量大的情况下推荐使用此方案。