最新图学习推荐系统综述 | Graph Learning Approaches to Recommender Systems

2020-05-08 16:55:45 浏览数 (1)

0 前言

还记得在知乎上回答过两个关于图的相关问题:

问题1:有必要学习图论么?

当时我的回答是:广义上来讲,任何数据在赋范空间内都可以建立拓扑关联,也就是可以构成graph,所以学习图论很有用。

问题2:图神经网络适合做推荐系统吗?

当时我的回答是:你想,用户-项目可以构成二部图(Bipartite Graph),用户与用户之间可以构成社交网络(Social Network),项目与项目之间可以存在知识图谱(Knowledge Graph),另外把这几者都考虑进去可以构成异质图(Heterogeneous Information Network),再把时间因素考虑进来而产生的动态演化而构成动态图(Dynamic Graph)。因此推荐系统中许多形式的数据都可以表示成图,当然许多大佬自然而然的将强大的GNN应用到推荐领域了。

所以,今天看到了一篇从图学习方法视角切入的综述文章《Graph Learning Approaches to Recommender Systems: A Review》,自然而然的想跟大家分享了。

还是那句话,综述不仅起到索引的作用,更大的作用是给我们小白一个牛人视角中的知识体系,然后通过借阅牛人的综述来Fine Tune自己的知识网络,以此来丰富自己的知识库。

1 摘要

近年来见证了基于图学习的推荐系统(GLRS)的快速发展。GLRS主要采用高级图学习方法来建模用户的偏好、意图以及推荐系统(RS)的项目特征和受欢迎程度。GLRS与传统的RS不同(包括基于内容的过滤和协同过滤),GLRS建立在简单或复杂的图上,其中各种对象(例如用户,项目和属性)被显式或隐式地连接。随着图学习的飞速发展,探索和利用图中的同构或异构关系是建立高级推荐系统非常有前景的方向。在本文中,对GLRS进行了系统的综述,探讨了GLRS如何从图中获取知识,以提高推荐的准确性,可靠性和可解释性。首先,对GLRS进行表示和形式化,然后对这一新研究领域中的关键挑战进行总结和归类。然后,调查了该领域的最新和重要的进展。最后,在这个充满活力的领域分享了一些新的研究方向。

2 特色

该文首先系统的介绍了GLRS中各种图方法普遍存在的关键挑战,并从数据驱动的角度对它们进行了分类,从而提供了一个新的视角来深入了解GLRS的特性。然后,通过从技术角度对最新论文进行系统分类,总结了GLRS的当前研究进展。最后,分享和讨论了GLRS的一些开放研究方向,以为社区提供参考。该文没有太多的公式和推导,更多的是归类和总结。可以通过该文了解主流以及前沿的图推荐算法,无聊的时候可以康康。值得注意的是,作者名单中出现了好几个大佬,Ricci,Philip,Xiangnan等。仰望大佬,从我做起。

3 主要内容

首先,从数据驱动的角度出发,系统地分析了推荐系统中的数据复杂性和特征,并相应地介绍了在具有不同数据特征的不同图形式上构建RS时的挑战。 下表提供了一个简短的分类和摘要,包括基于树图的RS、基于二部图的RS以及基于属性图的RS等。

然后,从技术角度为构建图学习推荐的这些挑战提供解决方案的分类,并讨论每个类别中取得的进展,包括基于随机游走的RS、基于图表示学习的RS、基于图卷积网络的RS以及基于知识图的RS等。

3 未来方向

文章最后,讨论了几个关于未来利用图方法进行推荐的研究点,主要包括基于动态图学习的推荐系统、基于因果推断的图学习推荐系统以及大规模图学习推荐系统等。

0 人点赞