python机器学习进行精准人脸识别

2020-05-22 15:07:04 浏览数 (1)

人脸识别准确率低?

上一篇我们讲了使用OpenCV进行人脸识别的最基础操作。但是从最后的效果可以看出,识别率、效率都很低,而且误检率比较高,识别过程中,系统资源占用相当大,实在是没办法在实际场合中使用。在opencv3.4 版之前自带的人脸检测器是基于Haar算法实现的,不仅检出率低,而且脸的角度稍大一些就检测不出来。但是随着深度学习领域的发展,涌现了一大批效果相当不错的人脸检测算法。

人脸检测方式对比

  • OpenCV Haar人脸检测 优点 1)几乎可以在CPU上实时工作; 2)简单的架构; 3)可以检测不同比例的人脸。

缺点 1)会出现大量的把非人脸预测为人脸的情况; 2)不适用于非正面人脸图像; 3)不抗遮挡。

  • OpenCV DNN 人脸检测 优点 1)在这四种方法中是最准确的; 2)在CPU上能够实时运行; 3)适用于不同的人脸方向:上,下,左,右,侧面等。 4)甚至在严重遮挡下仍能工作; 5)可以检测各种尺度的人脸。

缺点 基本上没有什么明显的缺点

  • Dlib HoG人脸检测 优点 1)CPU上最快的方法; 2)适用于正面和略微非正面的人脸; 3)与其他三个相比模型很小; 4)在小的遮挡下仍可工作。

缺点 1)不能检测小脸,因为它训练数据的最小人脸尺寸为80×80,但是用户可以用较小尺寸的人脸数据自己训练检测器; 2)边界框通常排除前额的一部分甚至下巴的一部分; 3)在严重遮挡下不能很好地工作; 4)不适用于侧面和极端非正面,如俯视或仰视。

  • Dlib CNN人脸检测 优点 1)适用于不同的人脸方向; 2)对遮挡鲁棒; 3)在GPU上工作得非常快; 4)非常简单的训练过程。

缺点 1)CPU速度很慢; 2)不能检测小脸,因为它训练数据的最小人脸尺寸为80×80,但是用户可以用较小尺寸的人脸数据自己训练检测器; 3)人脸包围框甚至小于DLib HoG人脸检测器。

非正面人脸检测效果对比:

通过以上对比,我们可以推荐OpenCV DNN人脸识别作为首选方式

OpenCV DNN人脸检测

OpenCV提供了两个模型: 1)原始Caffe实现的16位浮点型版本

代码语言:javascript复制
net = cv2.dnn.readNetFromCaffe("deploy.prototxt", "res10_300x300_ssd_iter_140000_fp16.caffemodel")

2)TensorFlow实现的8位量化版本

代码语言:javascript复制
net =cv2.dnn.readNetFromTensorflow("opencv_face_detector_uint8.pb", "opencv_face_detector.pbtxt")

OpenCV已经为我们提供了训练好的人脸识别模型,当然我们也可以自己训练,同样可以识别其他物体,实现实物识别。

下载训练模型

从上面的模型加载我们看到Caffe需要deploy.prototxtres10_300x300_ssd_iter_140000_fp16.caffemodel两个文件,TensorFlow需要opencv_face_detector_uint8.pbopencv_face_detector.pbtxt两个文件。我查到的很多帖子中都没有详细解释这些文件的来源,好在我找到了,我为大家详细描述一下:

  • 在GitHub中搜索opencv

访问目录:opencv/samples/dnn/face_detector

这里有我们需要的deploy.prototxt和opencv_face_detector.pbtxt文件,然后继续GitHub搜索opencv_3rdparty,打开如下:

库是空的,你可能比较懵逼一点,看一下分支

看到如下两个分支,当然还有很多其他的分支是用来做其他检测的,以后用的的可以在里面找,点进去后就能看到我们要下载的模型文件了

image.png

GitHub下载文件就不介绍了,到这里,我们需要的模型文件都下载好了,主要的检测函数有以下四个:

  • 读取训练模型:readNetFromCaffe或者readNetFromTensorflow
  • 图片预处理:blobFormImage
  • 设置网络输入值:setInput
  • 网络预测:forward
图片预处理:blobFormImage

函数原型:def blobFromImage(image, scalefactor=None, size=None, mean=None, swapRB=None, crop=None, ddepth=None) 这个是主要的函数,包含两个过程:

  • 整体像素值减去平均值(mean)
  • 通过缩放系数(scalefactor)对图片像素值进行缩放

主要参数解释

  • image:输入图像对象。
  • mean:需要将图片整体减去的平均值,在人脸识别是我们用固定数值(104.0, 177.0, 123.0),可能大家对这个比较迷惑,因为它是在模型训练是设定的,我们使用的是已经训练好的模型,直接写死即可。这个在上面图中我圈出的train.prototxt文件中可以看到。
  • scalefactor:经过像素去平均值以后,进行图片缩放,默认是1
  • size:这个参数是我们神经网络在训练的时候要求输入的图片尺寸。
  • swapRB:OpenCV中认为我们的图片通道顺序是BGR,但是我平均值假设的顺序是RGB,所以如果需要交换R和G,那么就要使swapRB=true
  • crop: 是否在调整大小后对图片进行裁剪,一般我们可以不进行裁剪

代码实现

代码语言:javascript复制
import numpy as np
import cv2, os


def show_detections(image, detections):
    h, w, c = image.shape
    for i in range(0, detections.shape[2]):
        confidence = detections[0, 0, i, 2]
        if confidence > 0.6:
            box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
            (startX, startY, endX, endY) = box.astype("int")
            text = "{:.2f}%".format(confidence * 100)
            y = startY - 10 if startY - 10 > 10 else startY   10
            cv2.rectangle(image, (startX, startY), (endX, endY),
                          (0, 255, 0), 1)
            cv2.putText(image, text, (startX, y),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 255, 0), 2)
    return image


def detect_img(net, image):
    # 其中的固定参数,我们在上面已经解释过了,固定就是如此
    blob = cv2.dnn.blobFromImage(image, 1.0, (300, 300), (104.0, 177.0, 123.0), False, False)
    net.setInput(blob)
    detections = net.forward()
    return show_detections(image, detections)


def test_file(net, filepath):
    img = cv2.imread(filepath)
    showimg = detect_img(net, img)
    cv2.imshow("img", showimg)
    cv2.waitKey(0)


def test_camera(net):
    cap = cv2.VideoCapture('人脸识别.mp4')
    while True:
        ret, img = cap.read()
        if not ret:
            break

        showimg = detect_img(net, img)
        cv2.imshow("img", showimg)
        cv2.waitKey(1)


if __name__ == "__main__":
    net = cv2.dnn.readNetFromCaffe("deploy.prototxt", "res10_300x300_ssd_iter_140000_fp16.caffemodel")
    # net =cv2.dnn.readNetFromTensorflow("opencv_face_detector_uint8.pb", "opencv_face_detector.pbtxt")
    # file_path = 'data/380.png'
    # test_file(net, file_path)
    test_camera(net)

OpenCV Haar & OpenCV DNN

Haar检测结果

Haar检测结果

DNN检测结果

DNN检测结果

以上图片使用Haar无法识别人脸,使用DNN完全可以识别。如果我们使用OpenCV提供的训练模型进行人脸识别,基本上函数调用及参数就是以上的值,而且识别率99%以上。

0 人点赞