Windows驱动_WFP之四WFP代码基本流程的剖析

2020-06-01 10:08:51 浏览数 (1)

总说程序员是孤独的,因为,大部分的时间都在和机器打交道。大部分的时间都在自言自语。我的内心需要足够的强大。这种强大时建立的自信的基础上的。而自信又是建立在实力基础上的。实力又是建立在积累的基础上。积累又是建立在时间的基础上。所以归根结底,就是,需要花费更多的时间。第二,需要有足够的兴趣爱好。这两点对于现在的我来说,都有。既然,自己选择了这条路,就应该义无反顾的走下去,坚持的走下去。孤独,我不怕,困难,我也不怕,永远向上的动力,爱好,对知识的渴望,支持者我。相信自己,相信明天。

今天实际看一下,WFP的Callout驱动的代码。先从DriverEntry开始:

1,在DriverEntry需要创建驱动对象和设备对象, 1.1 由于不是PNP设备,需要设置创建驱动对象的标志为config.DriverInitFlags |= WdfDriverInitNonPnpDriver. 1.2 调用WdfDriverCreate创建驱动对象。 1.3 调用WdfControlDeviceInitAllocate通过驱动对象创建 WDFDEVICE_INIT结构体。 1.4 调用WdfDeviceInitSetDeviceType设置设备类型为FILE_DEVICE_NETWORK. 1.5 调用WdfDeviceInitSetCharacteristics设置设备的特性为FILE_DEVICE_SECURE_OPEN和FILE_AUTOGENERATED_DEVICE_NAME. 1.6 调用WdfDeviceCreate创建设备对象。 1.7 调用WdfControlFinishInitializing设置设备的初始化状态为完成。 1.8 调用FwpsInjectionHandleCreate创建一个检测的句柄。并设置在哪里完成检查。通过在转发层,网络层,流层,传输层。 1.9 调用WdfDeviceWdmGetDeviceObject将框架设备对象转换为设备对象的指针。 1.10 调用FwpmEngineOpen打开一个和过滤引擎的会话,这个函数会返回一个过滤引擎的句柄。 1.11 调用FwpmTransactionBegin在当前的会话下,开始一个明确的传输。 1.12 调用FwpmSubLayerAdd函数玩系统中增加一个子层。

代码语言:javascript复制

 
           DWORD WINAPI FwpmSubLayerAdd0(
     _In_      HANDLE engineHandle,
     _In_      const FWPM_SUBLAYER0 *subLayer,
     _In_opt_  PSECURITY_DESCRIPTOR sd
       );

这里我们主要来看第二个参数,FWPM_SUBLAYER0这个结构体。

代码语言:javascript复制

 
     typedef struct FWPM_SUBLAYER0_ {
     GUID               subLayerKey;
     FWPM_DISPLAY_DATA0 displayData;
     UINT16             flags;
     GUID               *providerKey;
     FWP_BYTE_BLOB      providerData;
     UINT16             weight;
     } FWPM_SUBLAYER0;

这里,我们主要看第一个GUID,后面的需要在例子后分析。这个可以定义的GUID.

代码语言:javascript复制

 
     DEFINE_GUID(
     DD_PROXY_SUBLAYER,
     0x0104fd7e,
     0xc825,
     0x414e,
     0x94, 0xc9, 0xf0, 0xd5, 0x25, 0xbb, 0xc1, 0x69
     );
 
        DDProxySubLayer.subLayerKey = DD_PROXY_SUBLAYER;
        DDProxySubLayer.displayData.name = L"Datagram-Data Proxy Sub-Layer";
        DDProxySubLayer.displayData.description =
        L"Sub-Layer for use by Datagram-Data Proxy callouts";
        DDProxySubLayer.flags = 0;
        DDProxySubLayer.weight = FWP_EMPTY; // auto-weight.;
 
     1.13  调用FwpsCalloutRegister注册一个callout:
           NTSTATUS NTAPI FwpsCalloutRegister0(
       _Inout_    void *deviceObject,
       _In_       const FWPS_CALLOUT0 *callout,
       _Out_opt_  UINT32 *calloutId
     );

这里主要是第二个参数的设置:

代码语言:javascript复制

 
     typedef struct FWPS_CALLOUT0_ {
         GUID                                 calloutKey;
     UINT32                              flags;
     FWPS_CALLOUT_CLASSIFY_FN0           classifyFn;
     FWPS_CALLOUT_NOTIFY_FN0             notifyFn;
     FWPS_CALLOUT_FLOW_DELETE_NOTIFY_FN0 flowDeleteFn;
     } FWPS_CALLOUT0;

这里的calloutKey是一个GUID值,我们可以定义。classifyFn为驱动分类的函数入口。notifyFn为通知消息的函数入口。flowDeleteFn为流程删除的函数入口。 1.14 调用FwpmCalloutAdd,向过滤引擎增加一个callout.

代码语言:javascript复制

 
     NTSTATUS NTAPI FwpmCalloutAdd0(
     _In_       HANDLE engineHandle,
     _In_       const FWPM_CALLOUT0 *callout,
     _In_opt_   PSECURITY_DESCRIPTOR sd,
     _Out_opt_  UINT32 *id
     );

这里还是看第二个参数,FWPM_CALLOUT0.

代码语言:javascript复制

 
     typedef struct FWPM_CALLOUT0_ {
     GUID               calloutKey;
     FWPM_DISPLAY_DATA0 displayData;
     UINT32             flags;
     GUID               *providerKey;
     FWP_BYTE_BLOB      providerData;
     GUID               applicableLayer;
     UINT32             calloutId;
     } FWPM_CALLOUT0;

所以我们看到,这里我们有两个CALLOUT了,一个是FWPS_CALLOUT0,一个是FWPM_CALLOUT0,FWPS_CALLOUT0是给驱动用的,所以这里将其CALLOUT跟设备对象进行关联,但是后面还有个FWPM_CALLOUT0,这个就是跟过滤引擎进行交互的。再看其实这两个CALLOUT的GUID值是一样的,所以这样就进行了关联。两个CALLOUT相互关联,又相互独立,FWPM_CALLOUT0,负责和过滤引擎相关的操作。FWPS_CALLOUT0负责和驱动相关本身的操作。 这样,从驱动本身的驱动对象,设备对象和过滤引擎中的过滤层和CALLOUT进行联系上了。 1.15 调用FwpmFilterAdd增加一个过滤对象到系统中。

代码语言:javascript复制

 
      DWORD WINAPI FwpmFilterAdd0(
     _In_       HANDLE engineHandle,
     _In_       const FWPM_FILTER0 *filter,
     _In_opt_   SECURITY_DESCRIPTOR sd,
     _Out_opt_  UINT64 *id
       );

这里还是第二个参数,const FWPM_FILTER0 *filter,非常复杂的结构,这个是精髓,必须好好看。

代码语言:javascript复制

 
     typedef struct FWPM_FILTER0_ {
     GUID                   filterKey;
     FWPM_DISPLAY_DATA0     displayData;
     UINT32                 flags;
     GUID                   *providerKey;
     FWP_BYTE_BLOB          providerData;
     GUID                   layerKey;
     GUID                   subLayerKey;
     FWP_VALUE0             weight;
     UINT32                 numFilterConditions;
     FWPM_FILTER_CONDITION0 *filterCondition;
     FWPM_ACTION0           action;
     union {
       UINT64 rawContext;
       GUID   providerContextKey;
     };
     GUID                   *reserved;
     UINT64                 filterId;
     FWP_VALUE0             effectiveWeight;
     } FWPM_FILTER0;

我们先把,结构体中包含的结构,进行展开。

代码语言:javascript复制

 
     typedef struct FWPM_DISPLAY_DATA0_ {
       wchar_t *name;
       wchar_t *description;
     } FWPM_DISPLAY_DATA0;
 
     typedef struct FWP_BYTE_BLOB_ {
       UINT32 size;
       UINT8  *data;
     } FWP_BYTE_BLOB;

关于providerKey代表的是WFP内部定义的一些GUID.

代码语言:javascript复制

 
     typedef struct FWP_VALUE0_ {
 
       FWP_DATA_TYPE type;
       union {
       ;  // case(FWP_EMPTY)
       UINT8                 uint8;
       UINT16                uint16;
       UINT32                uint32;
       UINT64                *uint64;
       INT8                  int8;
       INT16                 int16;
       INT32                 int32;
       INT64                 *int64;
       float                 float32;
       double                *double64;
       FWP_BYTE_ARRAY16      *byteArray16;
       FWP_BYTE_BLOB         *byteBlob;
       SID                   *sid;
       FWP_BYTE_BLOB         *sd;
       FWP_TOKEN_INFORMATION *tokenInformation;
       FWP_BYTE_BLOB         *tokenAccessInformation;
       LPWSTR                unicodeString;
       FWP_BYTE_ARRAY6       *byteArray6;
       };
     } FWP_VALUE0;

这里,我的理解是,这个值代表代表一个过滤的一个比重,这个跟你在哪一层过滤都有关系。 下面看一下,最最重要的一个结构体,过滤的条件。当这所有的条件的满足的情况下,定义的过滤动作才开始。

代码语言:javascript复制

 
     typedef struct FWPM_FILTER_CONDITION0_ {
       GUID                fieldKey;
       FWP_MATCH_TYPE      matchType;
       FWP_CONDITION_VALUE conditionValue;
     } FWPM_FILTER_CONDITION0;

通常这个fieldKey域,微软有明确的定义。在每一个过滤层次上,都有不一样的过滤条件。可以看http://msdn.microsoft.com/en-us/library/windows/hardware/ff549944(v=vs.85).aspx

代码语言:javascript复制

 
 
     typedef enum FWP_MATCH_TYPE_ {
       FWP_MATCH_EQUAL,
       FWP_MATCH_GREATER,
       FWP_MATCH_LESS,
       FWP_MATCH_GREATER_OR_EQUAL,
       FWP_MATCH_LESS_OR_EQUAL,
       FWP_MATCH_RANGE,
       FWP_MATCH_FLAGS_ALL_SET,
       FWP_MATCH_FLAGS_ANY_SET,
       FWP_MATCH_FLAGS_NONE_SET,
       FWP_MATCH_EQUAL_CASE_INSENSITIVE,
       FWP_MATCH_NOT_EQUAL,
       FWP_MATCH_TYPE_MAX
     } FWP_MATCH_TYPE;
 
     typedef struct FWP_CONDITION_VALUE0_ {
       FWP_DATA_TYPE type;
       union {
       UINT8                 uint8;
       UINT16                uint16;
       UINT32                uint32;
       UINT64                *uint64;
       INT8                   int8;
       INT16                 int16;
       INT32                 int32;
       INT64                 *int64;
       float                 float32;
       double                *double64;
       FWP_BYTE_ARRAY16      *byteArray16;
       FWP_BYTE_BLOB         *byteBlob;
       SID                   *sid;
       FWP_BYTE_BLOB         *sd;
       FWP_TOKEN_INFORMATION *tokenInformation;
       FWP_BYTE_BLOB         *tokenAccessInformation;
       LPWSTR                unicodeString;
       FWP_BYTE_ARRAY6       *byteArray6;
       FWP_V4_ADDR_AND_MASK  *v4AddrMask;
       FWP_V6_ADDR_AND_MASK  *v6AddrMask;
       FWP_RANGE0            *rangeValue;
       };
     } FWP_CONDITION_VALUE0;

这个可能要多看下MSDN中的设置,因为跟微软玩,必须都符合它的要求。 下面再看下,过滤动作的这个结构体。

代码语言:javascript复制

 
     typedef struct FWPM_ACTION0_ {
       FWP_ACTION_TYPE type;
       union {
       GUID filterType;
       GUID calloutKey;
       };
     } FWPM_ACTION0;

这里要提一下的就是这个calloutKey,这个值正好跟之前calloutKey相吻合,主要我们向设备对象注册的callout,向过滤引擎注册的callout,以及和过滤的callout都指向同一个GUID值。 下面就是我们来看具体的CALLOUT函数的执行了,当满足这些条件后,CALLOUT被过滤引擎调用。 我们具体来看一下这个具体的CALLOUT函数:

代码语言:javascript复制

 
     void NTAPI classifyFn0(
     _In_     const FWPS_INCOMING_VALUES0 *inFixedValues,
     _In_     const FWPS_INCOMING_METADATA_VALUES0 *inMetaValues,
     _Inout_  void *layerData,
     _In_     const FWPS_FILTER0 *filter,
    _In_     UINT64 flowContext,
     _Out_    FWPS_CLASSIFY_OUT0 *classifyOut
     )
 
     typedef struct FWPS_INCOMING_VALUES0_ {
     UINT16               layerId;
     UINT32               valueCount;
     FWPS_INCOMING_VALUE0 *incomingValue;
     } FWPS_INCOMING_VALUES0;

这个layerId就是指的是过滤层的实时标识ID.可以参考微软的http://msdn.microsoft.com/en-us/library/windows/hardware/ff570731(v=vs.85).aspx

具体的数据域。

代码语言:javascript复制

     typedef struct FWPS_INCOMING_VALUE0_ {
     FWP_VALUE0 value;
     } FWPS_INCOMING_VALUE0;

这个值一看就知道,就是代表那些固定的值。比如一些IP地址,PORT等等。 再看:

代码语言:javascript复制

 
     typedef struct FWPS_INCOMING_METADATA_VALUES0_ {
     UINT32                          currentMetadataValues;
     UINT32                          flags;
     UINT64                          reserved;
     FWPS_DISCARD_METADATA0          discardMetadata;
     UINT64                          flowHandle;
     UINT32                          ipHeaderSize;
     UINT32                          transportHeaderSize;
     FWP_BYTE_BLOB                   *processPath;
     UINT64                          token;
     UINT64                          processId;
     UINT32                          sourceInterfaceIndex;
     UINT32                          destinationInterfaceIndex;
     ULONG                           compartmentId;
     FWPS_INBOUND_FRAGMENT_METADATA0 fragmentMetadata;
     ULONG                           pathMtu;
     HANDLE                          completionHandle;
     UINT64                          transportEndpointHandle;
     SCOPE_ID                        remoteScopeId;
     WSACMSGHDR                      *controlData;
     ULONG                           controlDataLength;
     FWP_DIRECTION                   packetDirection;
     #if (NTDDI_VERSION >= NTDDI_WIN6SP1)
     PVOID                           headerIncludeHeader;
     ULONG                           headerIncludeHeaderLength;
     #if (NTDDI_VERSION >= NTDDI_WIN7)
     IP_ADDRESS_PREFIX               destinationPrefix;
     UINT16                          frameLength;
     UINT64                          parentEndpointHandle;
     UINT32                          icmpIdAndSequence;
     DWORD                           localRedirectTargetPID;
     SOCKADDR                        *originalDestination;
     #if (NTDDI_VERSION >= NTDDI_WIN8)
     HANDLE                          redirectRecords;
     UINT32                          currentL2MetadataValues;
     UINT32                          l2Flags;
     UINT32                          ethernetMacHeaderSize;
     UINT32                          wiFiOperationMode;
     #if (NDIS_SUPPORT_NDIS630)
     NDIS_SWITCH_PORT_ID             vSwitchSourcePortId;
     NDIS_SWITCH_NIC_INDEX           vSwitchSourceNicIndex;
     NDIS_SWITCH_PORT_ID             vSwitchDestinationPortId;
     #else
     UINT32                          padding0;
     USHORT                          padding1;
     UINT32                          padding2;
     #endif
     HANDLE                          vSwitchPacketContext;
     UINT32                          l2ConnectionProfileIndex;
     #endif
     #endif
     #endif
     #if (NTDDI_VERSION >= NTDDI_WIN8)
     PVOID                           subProcessTag;
     UINT64                          Reserved1;
     #endif
     } FWPS_INCOMING_METADATA_VALUES0;

这个数据就是包含需要过滤的一些元数据的值。 我们再来看void *layerData,这个值,可能为NULL,取决于过滤条件和过滤层。 在Stream层,这个参数指向 FWPS_STREAM_CALLOUT_IO_PACKET0 结构,对于其他的层,这个参数指向NET_BUFFER_LIST,或者为NULL. FWPS_FILTER0 *filter 这个结构体,我们之前有看过:

代码语言:javascript复制

 
     typedef struct FWPS_FILTER0_ {
       UINT64                 filterId;
       FWP_VALUE0             weight;
       UINT16                 subLayerWeight;
       UINT16                 flags;
       UINT32                 numFilterConditions;
       FWPS_FILTER_CONDITION0 *filterCondition;
       FWPS_ACTION0           action;
       UINT64                 context;
       FWPM_PROVIDER_CONTEXT0 *providerContext;
     } FWPS_FILTER0;

UINT64 flowContext,这个参数是和过滤数据相关联的上下文结构。 再来看,FWPS_CLASSIFY_OUT0 *classifyOut,这个结构体比较重要: 这个是返回给调用者的结构体。

代码语言:javascript复制

 
     struct FWPS_CLASSIFY_OUT0 {
       FWP_ACTION_TYPE actionType;
       UINT64          outContext;
       UINT64          filterId;
       UINT32          rights;
       UINT32          flags;
       UINT32          reserved;
     };
 

可以参考http://msdn.microsoft.com/en-us/library/windows/hardware/ff551229(v=vs.85).aspx

我们再从前面看,在DriverEntry最后面,我们有起一个线程来进行对包的数据的检查,看是否需要修改,以及重新注入后发送。这个也必须根据其过滤条件有关。 我们看一个复杂的callout的ClassifyFn函数的具体实现。

代码语言:javascript复制

 
     void
     DDProxyClassify(
      _In_ const FWPS_INCOMING_VALUES* inFixedValues,
      _In_ const FWPS_INCOMING_METADATA_VALUES* inMetaValues,
      _Inout_opt_ void* layerData,
      _In_ const FWPS_FILTER* filter,
      _In_ UINT64 flowContext,
      _Inout_ FWPS_CLASSIFY_OUT* classifyOut
     )

      #endif /// (NTDDI_VERSION >= NTDDI_WIN7)
     /*   

     This is the classifyFn function of the datagram-data callout. It
     allocates a packet structure to store the classify and meta data and
     it references the net buffer list for out-of-band modification and
     re-injection. The packet structure will be queued to the global packet
     queue. The worker thread will then be signaled, if idle, to process
     the queue.

     -- */
     {
      DD_PROXY_PENDED_PACKET* packet = NULL;
      DD_PROXY_FLOW_CONTEXT* flowContextLocal = (DD_PROXY_FLOW_CONTEXT*)(DWORD_PTR)flowContext;

      FWPS_PACKET_INJECTION_STATE packetState;
      KLOCK_QUEUE_HANDLE packetQueueLockHandle;
      BOOLEAN signalWorkerThread;

      #if(NTDDI_VERSION >= NTDDI_WIN7)
       UNREFERENCED_PARAMETER(classifyContext);
      #endif
       UNREFERENCED_PARAMETER(filter);

      _Analysis_assume_(layerData != NULL);

      //
      // We don't have the necessary right to alter the packet.
      // 首先检查,我们是否有权利去修改这个包。
      if ((classifyOut->rights & FWPS_RIGHT_ACTION_WRITE) == 0)
      {
       goto Exit;
      }

      //
      // We don't re-inspect packets that we've inspected earlier.
      //
      packetState = FwpsQueryPacketInjectionState(
        gInjectionHandle,
        layerData,
        NULL
      );

      //如果这个包注入的状态是,之前已经被这个注入句柄注入过,就不用再处理了。
      if ((packetState == FWPS_PACKET_INJECTED_BY_SELF) ||
       (packetState == FWPS_PACKET_PREVIOUSLY_INJECTED_BY_SELF))
      {
       classifyOut->actionType = FWP_ACTION_PERMIT;
       if (filter->flags & FWPS_FILTER_FLAG_CLEAR_ACTION_RIGHT)
       {
        classifyOut->rights &= ~FWPS_RIGHT_ACTION_WRITE;
       }

       goto Exit;
      }
 
      //分配一个和过滤条件相匹配的空间。
      packet = ExAllocatePoolWithTag(
       NonPagedPool,
       sizeof(DD_PROXY_PENDED_PACKET),
       DD_PROXY_PENDED_PACKET_POOL_TAG
                      );
                     //分配失败,直接退出,等待下一次处理。
      if (packet == NULL)
      {
       classifyOut->actionType = FWP_ACTION_BLOCK;
       classifyOut->rights &= ~FWPS_RIGHT_ACTION_WRITE;
       goto Exit;
      }

      RtlZeroMemory(packet, sizeof(DD_PROXY_PENDED_PACKET));

      NT_ASSERT(flowContextLocal != NULL);

      packet->belongingFlow = flowContextLocal;
      DDProxyReferenceFlowContext(packet->belongingFlow);
      //AF_INET代表的是TCP或UDP,通过固定数据中的数据与来传输方向。
      if (flowContextLocal->addressFamily == AF_INET)
      {
       NT_ASSERT(inFixedValues->layerId == FWPS_LAYER_DATAGRAM_DATA_V4);
       packet->direction =
       inFixedValues->incomingValue[FWPS_FIELD_DATAGRAM_DATA_V4_DIRECTION].
        value.uint32;
      }
      else
      {
       NT_ASSERT(inFixedValues->layerId == FWPS_LAYER_DATAGRAM_DATA_V6);
       packet->direction =
       inFixedValues->incomingValue[FWPS_FIELD_DATAGRAM_DATA_V6_DIRECTION].
       value.uint32;
      }
      //将NET_BUFFER_LIST结构体的指针赋给packer->netBufferList.
      packet->netBufferList = layerData;

      //
      // Reference the net buffer list to make it accessible outside of
      // classifyFn.
      //
      //引用NET_BUFFER_LIST.
      FwpsReferenceNetBufferList(packet->netBufferList, TRUE);

      NT_ASSERT(FWPS_IS_METADATA_FIELD_PRESENT(inMetaValues,
                                          FWPS_METADATA_FIELD_COMPARTMENT_ID));
      packet->compartmentId = inMetaValues->compartmentId;

      if (packet->direction == FWP_DIRECTION_OUTBOUND)
      {
       NT_ASSERT(FWPS_IS_METADATA_FIELD_PRESENT(
         inMetaValues,
         FWPS_METADATA_FIELD_TRANSPORT_ENDPOINT_HANDLE));
       packet->endpointHandle = inMetaValues->transportEndpointHandle;

      if (flowContextLocal->addressFamily == AF_INET)
      {
       // See PREfast comments above.  Opaque pointer tricks PREfast.
       #pragma prefast ( suppress: 28193, "We are NOT ignoring this return value" )
       packet->ipv4RemoteAddr =
       RtlUlongByteSwap( /* host-order -> network-order conversion */
        inFixedValues->incomingValue
       [FWPS_FIELD_DATAGRAM_DATA_V4_IP_REMOTE_ADDRESS].value.uint32);
      }
      else
      {
       RtlCopyMemory(
        (UINT8*)&packet->remoteAddr,
        inFixedValues->incomingValue
        [FWPS_FIELD_DATAGRAM_DATA_V6_IP_REMOTE_ADDRESS].value.byteArray16,
        sizeof(FWP_BYTE_ARRAY16)
       );

      }
      packet->remoteScopeId = inMetaValues->remoteScopeId;

      if (FWPS_IS_METADATA_FIELD_PRESENT(
       inMetaValues,
       FWPS_METADATA_FIELD_TRANSPORT_CONTROL_DATA))
      {
       NT_ASSERT(inMetaValues->controlDataLength > 0);

       packet->controlData = ExAllocatePoolWithTag(
                                  NonPagedPool,
                                  inMetaValues->controlDataLength,
                                  DD_PROXY_CONTROL_DATA_POOL_TAG
                                  );
      if (packet->controlData == NULL)
      {
       classifyOut->actionType = FWP_ACTION_BLOCK;
       classifyOut->rights &= ~FWPS_RIGHT_ACTION_WRITE;
       goto Exit;
      }

      RtlCopyMemory(
       packet->controlData,
       inMetaValues->controlData,
       inMetaValues->controlDataLength
      );

       packet->controlDataLength =  inMetaValues->controlDataLength;
      }
      }
      else
      {
       NT_ASSERT(packet->direction == FWP_DIRECTION_INBOUND);

       if (flowContextLocal->addressFamily == AF_INET)
       {
        NT_ASSERT(inFixedValues->layerId == FWPS_LAYER_DATAGRAM_DATA_V4);
        packet->interfaceIndex =
         inFixedValues->incomingValue
         [FWPS_FIELD_DATAGRAM_DATA_V4_INTERFACE_INDEX].value.uint32;
        packet->subInterfaceIndex =
        inFixedValues->incomingValue
        [FWPS_FIELD_DATAGRAM_DATA_V4_SUB_INTERFACE_INDEX].value.uint32;
       }
      else
      {
       NT_ASSERT(inFixedValues->layerId == FWPS_LAYER_DATAGRAM_DATA_V6);
       packet->interfaceIndex =
        inFixedValues->incomingValue
        [FWPS_FIELD_DATAGRAM_DATA_V6_INTERFACE_INDEX].value.uint32;
       packet->subInterfaceIndex =
        inFixedValues->incomingValue
        [FWPS_FIELD_DATAGRAM_DATA_V6_SUB_INTERFACE_INDEX].value.uint32;
      }
 
      NT_ASSERT(FWPS_IS_METADATA_FIELD_PRESENT(
       inMetaValues,
       FWPS_METADATA_FIELD_IP_HEADER_SIZE));
      NT_ASSERT(FWPS_IS_METADATA_FIELD_PRESENT(
       inMetaValues,
      FWPS_METADATA_FIELD_TRANSPORT_HEADER_SIZE));
      packet->ipHeaderSize = inMetaValues->ipHeaderSize;
      packet->transportHeaderSize = inMetaValues->transportHeaderSize;

      packet->nblOffset =
       NET_BUFFER_DATA_OFFSET(NET_BUFFER_LIST_FIRST_NB(packet->netBufferList));
      }

      KeAcquireInStackQueuedSpinLock(
       &gPacketQueueLock,
       &packetQueueLockHandle
      );

      if (!gDriverUnloading)
      {
       signalWorkerThread = IsListEmpty(&gPacketQueue);

       InsertTailList(&gPacketQueue, &packet->listEntry);
       packet = NULL; // ownership transferred

       classifyOut->actionType = FWP_ACTION_BLOCK;
       classifyOut->rights &= ~FWPS_RIGHT_ACTION_WRITE;
       classifyOut->flags |= FWPS_CLASSIFY_OUT_FLAG_ABSORB;
      }
      else
      {
       //
       // Driver is being unloaded, permit any incoming packets.
       //
       signalWorkerThread = FALSE;

       classifyOut->actionType = FWP_ACTION_PERMIT;
       if (filter->flags & FWPS_FILTER_FLAG_CLEAR_ACTION_RIGHT)
       {
         classifyOut->rights &= ~FWPS_RIGHT_ACTION_WRITE;
       }
      }

      if (signalWorkerThread)
      {
       KeSetEvent(
        &gPacketQueueEvent,
        0,
        FALSE
       );
      }

       KeReleaseInStackQueuedSpinLock(&packetQueueLockHandle);

 Exit:
 
      if (packet != NULL)
      {
       DDProxyFreePendedPacket(packet, packet->controlData);
      }

      return;
 }
 
      这里是放在函数外注入修改,这里是通过线程来处理的,我们先看重新注入函数。
 
      NTSTATUS
      DDProxyCloneModifyReinjectInbound(
       _In_ DD_PROXY_PENDED_PACKET* packet
      )
      /*   

      This function clones the inbound net buffer list and, if needed,
      modifies the source port and/or source address and receive-injects
      the clone back to the tcpip stack.

      -- */
      {
       NTSTATUS status = STATUS_SUCCESS;

       NET_BUFFER_LIST* clonedNetBufferList = NULL;
       NET_BUFFER* netBuffer;
       UDP_HEADER* udpHeader;
       ULONG nblOffset;
       NDIS_STATUS ndisStatus;

      //
      // For inbound net buffer list, we can assume it contains only one
      // net buffer.
      //
       netBuffer = NET_BUFFER_LIST_FIRST_NB(packet->netBufferList);
 
       nblOffset = NET_BUFFER_DATA_OFFSET(netBuffer);

      //
      // The TCP/IP stack could have retreated the net buffer list by the
      // transportHeaderSize amount; detect the condition here to avoid
      // retreating twice.
      //
       if (nblOffset != packet->nblOffset)
       {
        NT_ASSERT(packet->nblOffset - nblOffset == packet->transportHeaderSize);
        packet->transportHeaderSize = 0;
       }

       //
       // Adjust the net buffer list offset to the start of the IP header.
       //
       ndisStatus = NdisRetreatNetBufferDataStart(
           netBuffer,
           packet->ipHeaderSize   packet->transportHeaderSize,
           0,
           NULL
       );
       _Analysis_assume_(ndisStatus == NDIS_STATUS_SUCCESS);

       //
       // Note that the clone will inherit the original net buffer list's offset.
       //

       status = FwpsAllocateCloneNetBufferList(
          packet->netBufferList,
          NULL,
          NULL,
          0,
          &clonedNetBufferList
       );

       //
       // Undo the adjustment on the original net buffer list.
       //

       NdisAdvanceNetBufferDataStart(
        netBuffer,
        packet->ipHeaderSize   packet->transportHeaderSize,
        FALSE,
        NULL
       );

       if (!NT_SUCCESS(status))
       {
        goto Exit;
       }

       //
       // Check to see if port modification is required.
       //
       if ((packet->belongingFlow->protocol == IPPROTO_UDP) &&
        (packet->belongingFlow->toRemotePort != 0))
       {
        netBuffer = NET_BUFFER_LIST_FIRST_NB(clonedNetBufferList);

        //
        // Advance to the beginning of the transport header (i.e. UDP header).
        //
        NdisAdvanceNetBufferDataStart(
          netBuffer,
          packet->ipHeaderSize,
          FALSE,
          NULL
        );

        udpHeader = NdisGetDataBuffer(
          netBuffer,
          sizeof(UDP_HEADER),
          NULL,
          sizeof(UINT16),
          0
        );
        NT_ASSERT(udpHeader != NULL); // We can assume UDP header in a net buffer
                 // is contiguous and 2-byte aligned.
        _Analysis_assume_(udpHeader != NULL);
 
        udpHeader->destPort =
        packet->belongingFlow->toRemotePort;
                                     // This is our new source port -- or
                                     // the destination port of the original
                                     // outbound traffic.
        udpHeader->checksum = 0;

        //
        // Undo the advance. Net buffer list needs to be positioned at the
        // beginning of IP header for address modification and/or receive-
        // injection.
        //
        ndisStatus = NdisRetreatNetBufferDataStart(
          netBuffer,
          packet->ipHeaderSize,
          0,
          NULL
          );
        _Analysis_assume_(ndisStatus == NDIS_STATUS_SUCCESS);

       }

       if (packet->belongingFlow->toRemoteAddr != NULL)
       {
       status = FwpsConstructIpHeaderForTransportPacket(
          clonedNetBufferList,
          packet->ipHeaderSize,
          packet->belongingFlow->addressFamily,
          packet->belongingFlow->toRemoteAddr,  
                                        // This is our new source address --
                                        // or the destination address of the
                                        // original outbound traffic.
          (UINT8*)&packet->belongingFlow->localAddr,
                                        // This is the destination address of
                                        // the clone -- or the source of the
                                        // original outbound traffic.
          packet->belongingFlow->protocol,
          0,
          NULL,
          0,
          0,
          NULL,
          0,
          0
          );

       if (!NT_SUCCESS(status))
       {
        goto Exit;
       }
       }

       status = FwpsInjectTransportReceiveAsync(
           gInjectionHandle,
           NULL,
           NULL,
           0,
           packet->belongingFlow->addressFamily,
           packet->compartmentId,
           packet->interfaceIndex,
           packet->subInterfaceIndex,
           clonedNetBufferList,
           DDProxyInjectComplete,
           packet
         );

         if (!NT_SUCCESS(status))
         {
          goto Exit;
         }

      clonedNetBufferList = NULL; // ownership transferred to the
                                // completion function.

 Exit:

      if (clonedNetBufferList != NULL)
      {
       FwpsFreeCloneNetBufferList(clonedNetBufferList, 0);
      }

       return status;
 }

写在最后,关于WFP,自己只是懂了点皮毛,这个需要非常好的网络相关的知识,而且需要对

微软的NDIS非常熟悉,虽然自己差不多将NDIS看了许多,但是还不够熟练。

而且,关于WFP中,微软定义了非常多了不好理解的数据结构和一些过滤层,

这应该是一个大工程,需要自己经常,反复揣摩。

0 人点赞