一般meta中的森林图是这样的:
见到过高端文章里比较复杂的是这样的,每个物种有很多个效应量:
那么就来尝试一下实现这种图。
读入数据:
代码语言:javascript复制>library(ggplot2)
>eff_size <- read.table("E:/forestdata.txt", header = T,sep = "t")
>eff_size
species A B C Lower
1 Fusobacterium nucleatum 0.7011937 0.8211937 0.5011937 0.5308094
2 Parvimonas micra 0.6503721 0.7703721 0.4503721 0.4806099
3 Parvimonas spp. 0.6292963 0.7492963 0.4292963 0.4534209
4 Gemella morbillorum 0.6005114 0.7205114 0.4005114 0.4391758
5 Peptostreptococcus stomatis 0.5803963 0.7003963 0.3803963 0.4192075
6 Solobacterium moorei 0.5323909 0.6523909 0.3323909 0.3720123
7 Clostridium symbiosum 0.4791824 0.5991824 0.2791824 0.3112856
8 Anaerococcus vaginalis 0.4176721 0.5376721 0.2176721 0.2423912
9 Porphyromonas asaccharolytica 0.4153169 0.5353169 0.2153169 0.2558456
10 Prevotella intermedia 0.3888456 0.5088456 0.1888456 0.2138550
11 Streptococcus australis -0.2203435 -0.1003435 -0.4203435 -0.3828304
12 Lachnospiraceae bacterium 1 1 57FAA -0.2314120 -0.1114120 -0.4314120 -0.3896990
13 Ruminococcussp 5 1 39BFAA -0.2384873 -0.1184873 -0.4384873 -0.3968436
14 Pseudomonas spp. -0.2550211 -0.1350211 -0.4550211 -0.4389134
15 Bifidobacterium longum -0.2570670 -0.1370670 -0.4570670 -0.4156960
16 Eubacterium hallii -0.2631902 -0.1431902 -0.4631902 -0.4500349
17 Adlercreutzia equolifaciens -0.2660466 -0.1460466 -0.4660466 -0.4244658
18 Streptococcus thermophilus -0.2794899 -0.1594899 -0.4794899 -0.4381088
19 Faecalibacterium prausnitzii -0.2985913 -0.1785913 -0.4985913 -0.4573489
20 Roseburia intestinalis -0.3151002 -0.1951002 -0.5151002 -0.4784761
Upper y
1 0.87157807 1
2 0.82013431 2
3 0.80517175 3
4 0.76184690 4
5 0.74158514 5
6 0.69276956 6
7 0.64707925 7
8 0.59295310 8
9 0.57478820 9
10 0.56383624 10
11 -0.05785654 11
12 -0.07312512 12
13 -0.08013106 13
14 -0.07112876 14
15 -0.09843809 15
16 -0.07634546 16
17 -0.10762733 17
18 -0.12087110 18
19 -0.13983379 19
20 -0.15172427 20
#长宽转化
>library(reshape2)
>eff.ggplot = melt(eff_size,
id.vars = c("species","Lower","Upper","y"),
measure.vars = c("A","B","C"),
variable.name='group',
value.name='values')
>head(eff.ggplot)
species Lower Upper y group values
1 Fusobacterium nucleatum 0.5308094 0.8715781 1 A 0.7011937
2 Parvimonas micra 0.4806099 0.8201343 2 A 0.6503721
3 Parvimonas spp. 0.4534209 0.8051718 3 A 0.6292963
4 Gemella morbillorum 0.4391758 0.7618469 4 A 0.6005114
5 Peptostreptococcus stomatis 0.4192075 0.7415851 5 A 0.5803963
6 Solobacterium moorei 0.3720123 0.6927696 6 A 0.5323909
#设定主题
>plot_theme = theme(panel.background=element_blank(),
panel.grid=element_blank(),
axis.line.x=element_line(size=.5, colour="black"),
axis.line.y=element_line(size=.5, colour="black"),
axis.ticks=element_line(color="black"),
axis.text=element_text(color="black", size=20),
legend.position="right",
legend.background=element_blank(),
legend.key=element_blank(),
legend.text= element_text(size=20),
text=element_text(family="sans", size=20))
#散点和置信区间连线
>p = ggplot(data=eff.ggplot,aes(values,y,col=group))
geom_point(shape=group,size=3)
>for (i in 1:nrow(eff.ggplot)){
p <- p geom_segment(aes_string(
x = eff.ggplot$Lower[i], y = eff.ggplot$y[i],
xend = eff.ggplot$Upper[i], yend = eff.ggplot$y[i]),
color="tomato3",size=1)
};
>p = p geom_vline(xintercept=0,color="tomato3")
加物种注释:
代码语言:javascript复制>left = eff_size[eff_size$Lower>0,]
>right = eff_size[eff_size$Upper<0,]
>p = p annotate("text",x=0.15,y=right$y,label=right$species,hjust=0)
annotate("text",x=-0.1,y=left$y,label=left$species,hjust=1)
>p = p labs(title="Forest plot",
subtitle="Multi- effect size for each species",
caption="By 水岸风堤",
x="Effect size",
y="Species")
plot_theme;p
完