【 HDU1081 】 To The Max (最大子矩阵和)

2020-06-02 13:56:06 浏览数 (1)

题目链接 Problem - 1081

题意

Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.

As an example, the maximal sub-rectangle of the array:

0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2

is in the lower left corner:

9 2 -4 1 -1 8

and has a sum of 15. 求最大的子矩阵和。

题解

这题注意要多组输入输出。

方法1

方法2

看了别人的,突然觉得自己的真麻烦。 s[i][j]表示第i行的前j列的和。 枚举左右边界的列编号i,j,sum保存第i列到第j列从第k行往上连续的最大和。这个过程只需枚举k从1到n,只要之前的sum是正的就继续累加,否则sum=0再加:sum =s[k][j]-s[k][i-1]。用sum更新ans即可。

代码

方法1
代码语言:javascript复制
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#define N 105
using namespace std;
int n,a[N][N],g[N][N],s[N][N],ans;
int main() {
    while(~scanf("%d",&n)){
        ans=-127;
        memset(g,0,sizeof g);
        memset(s,0,sizeof s);
        
    for(int i=1;i<=n;i  )
    for(int j=1;j<=n;j  )
        scanf("%d",&a[i][j]);
    for(int k=1;k<=n;k  )
    for(int l=1;l<=n;l  ){
        s[k][l]=s[k-1][l] s[k][l-1]-s[k-1][l-1] a[k][l];
        for(int i=0;i<k;i  ){
            int &j=g[k][i];
            ans=max(ans,s[k][l]-s[i][l]-s[k][j] s[i][j]);
            if(s[k][j]-s[i][j]>s[k][l]-s[i][l])j=l;
        }
    }
    printf("%dn",ans);
    }
    return 0;
}
方法2
代码语言:javascript复制
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#define N 105
using namespace std;
int n,s[N][N],ans,sum;
int main() {
	while(~scanf("%d",&n)){
		memset(s,0,sizeof s);
		ans=-127;sum=0;
		for(int i=1,a;i<=n;i  )
		for(int j=1;j<=n;j  ){
			scanf("%d",&a);
			s[i][j]=s[i][j-1] a;
		}
		for(int i=1;i<=n;i  )
		for(int j=i;j<=n;j  )
		for(int k=1;k<=n;k  ){
			if(k==1||sum<0)sum=0;
			sum =s[k][j]-s[k][i-1];
			ans=max(ans,sum);
		}
		printf("%dn",ans);
	}
	return 0;
}

0 人点赞