预告 | 模型加速/压缩——精度无损

2020-06-06 16:33:25 浏览数 (1)

今天主要是预先告知大家下一期我们发送的内容,主要是模型压缩!如果你们有想了解或深入熟悉的框架,可以在留言处告诉我们,我们也会第一时间把大家希望的分享出来,我们一起学习讨论,共同进步!

预告

普通卷积过程

优化后

网络修剪、低比特量化、知识精馏等方法的性能往往是有上限的,因为使用了预先训练的深度神经网络作为其基线。因此这些方法的性能通常取决于给定的预训练模型。对基本操作和体系结构的改进将使它们走得更远。

虽然Xception、MobileNets、MobileNetV2、MobileNetV3、ShuffleNet和ShuffleNetV2等轻量级模型以很少的FLOPs获得了很好的性能,但是它们特征图之间的相关性和冗余性一直没有得到很好的利用。

0 人点赞