使用小批量数据时,模型容易过拟合,所以需要对全量数据进行处理,我是用的是word2vec训练的词向量. 那么训练好对词向量如何加载呢?
代码语言:javascript复制#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
-------------------------------------------------
Version : None
File Name : paddle_load_w2v
Description : None
Author : gongxijun
Email :
date : 2019-12-04
-------------------------------------------------
Change Activity:
2019-12-04:
-------------------------------------------------
"""
from __future__ import absolute_import
from __future__ import print_function
from __future__ import unicode_literals
__author__ = 'gongxijun'
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.nets as nets
import numpy as np
import math
import codecs
from huangdao.dataset import data_feeder
def load_parameter(file_name):
embeddings = []
words = []
with codecs.open(file_name, 'r',encoding="utf8") as f:
header = f.readline()
vocab_size, vector_size = map(int, header.split())
for line in range(vocab_size):
word_list = f.readline().strip("n").strip(" ").split(' ')
word = word_list[0]
vector = word_list[1:]
words.append(word if len(word) > 0 else "unk")
assert len(vector) == vector_size, "{} {}".format(len(vector), vector_size)
embeddings.append(np.array(vector))
assert len(words) == len(embeddings)
return words, embeddings
word_dict_len = 74378
word_dim = 128
def get_embedding(name, shape, is_sparse=True, dtype='int64'):
"""
:param name:
:param is_categorical: bool 是否是类标签
:param shape: must be (a,b)
:param dtype:
:param is_sparse: bool
:return:
"""
alias_id = layers.data(name=name, shape=[1], dtype=dtype)
assert len(shape) == 2, '{} must equal 2'.format(len(shape))
alias_emb = layers.embedding(input=alias_id, size=shape,
param_attr=fluid.param_attr.ParamAttr(name="embedding_{}".format(name)),
is_sparse=is_sparse)
alias_fc = layers.fc(input=alias_emb, size=shape[1])
return alias_fc
words_emb = get_embedding("words", shape=(word_dict_len, word_dim))
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
embedding_param = fluid.global_scope().find_var(
"embedding_words").get_tensor()
words, embeddings = load_parameter("/Users/gongxijun/data/item2vec.txt")
embedding_param.set(embeddings, place)