keras系列︱keras是如何指定显卡且限制显存用量

2018-01-02 16:31:55 浏览数 (1)

keras在使用GPU的时候有个特点,就是默认全部占满显存。 若单核GPU也无所谓,若是服务器GPU较多,性能较好,全部占满就太浪费了。 于是乎有以下三种情况: - 1、指定GPU - 2、使用固定显存的GPU - 3、指定GPU 固定显存

一、固定显存的GPU

本节来源于:深度学习theano/tensorflow多显卡多人使用问题集(参见:Limit the resource usage for tensorflow backend · Issue #1538 · fchollet/keras · GitHub) 在使用keras时候会出现总是占满GPU显存的情况,可以通过重设backend的GPU占用情况来进行调节。

代码语言:javascript复制
import tensorflow as tf
from keras.backend.tensorflow_backend import set_session
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.3
set_session(tf.Session(config=config))

需要注意的是,虽然代码或配置层面设置了对显存占用百分比阈值,但在实际运行中如果达到了这个阈值,程序有需要的话还是会突破这个阈值。换而言之如果跑在一个大数据集上还是会用到更多的显存。以上的显存限制仅仅为了在跑小数据集时避免对显存的浪费而已。(2017年2月20日补充)

二、指定GPU

代码语言:javascript复制
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "2"

此时的代码为选择了编号为2 的GPU

代码语言:javascript复制
# python设置系统变量的方法
os.environ["CUDA_VISIBLE_DEVICES"] = "8,9,10,11,12,13,14,15"

注意,在代码中指定设备时,重新从0开始计,而不是从8开始。 来源:Tensorflow 学习笔记(七) ———— 多GPU操作

三、指定GPU 固定显存

上述两个连一起用就行:

代码语言:javascript复制
import os
import tensorflow as tf
os.environ["CUDA_VISIBLE_DEVICES"] = "2"
from keras.backend.tensorflow_backend import set_session
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.3
set_session(tf.Session(config=config))

那么在命令行,可以使用:https://github.com/tensorflow/nmt/issues/60

代码语言:javascript复制
CUDA_VISIBLE_DEVICES=0 python -m nmt.nmt 

0 人点赞