本次实战是利用爬虫爬取链家的新房(声明: 内容仅用于学习交流, 请勿用作商业用途)
环境
win8, python 3.7, pycharm
正文
1. 目标网站分析
通过分析, 找出相关url, 确定请求方式, 是否存在js加密等.
2. 新建scrapy项目
1. 在cmd命令行窗口中输入以下命令, 创建lianjia项目
代码语言:javascript复制scrapy startproject lianjia
2. 在cmd中进入lianjia文件中, 创建Spider文件
代码语言:javascript复制cd lianjia
scrapy genspider -t crawl xinfang lianjia.com
这次创建的是CrawlSpider类, 该类适用于批量爬取网页
3. 新建main.py文件, 用于执行scrapy项目文件
到现在, 项目就创建完成了, 下面开始编写项目
3 定义字段
在items.py文件中定义需要的爬取的字段信息
代码语言:javascript复制import scrapy
from scrapy.item import Item, Field
class LianjiaItem(scrapy.Item):
# define the fields for your item here like:
# name = scrapy.Field()
city = Field() #城市名
name = Field() #楼盘名
type = Field() #物业类型
status = Field() #状态
region = Field() #所属区域
street = Field() #街道
address = Field() #具体地址
area = Field() #面积
average_price = Field() #平均价格
total_price = Field() #总价
tags = Field() #标签
4 爬虫主程序
在xinfang.py文件中编写我们的爬虫主程序
代码语言:javascript复制from scrapy.linkextractors import LinkExtractor
from scrapy.spiders import CrawlSpider, Rule
from lianjia.items import LianjiaItem
class XinfangSpider(CrawlSpider):
name = 'xinfang'
allowed_domains = ['lianjia.com']
start_urls = ['https://bj.fang.lianjia.com/']
#定义爬取的规则, LinkExtractor是用来提取链接(其中,allow指允许的链接格式, restrict_xpaths指链接处于网页结构中的位置), follow为True表示跟进提取出的链接, callback则是调用函数
rules = (
Rule(LinkExtractor(allow=r'.fang.*com/$', restrict_xpaths='//div[@class="footer"]//div[@class="link-list"]/div[2]/dd'), follow=True),
Rule(LinkExtractor(allow=r'.*loupan/$', restrict_xpaths='//div[@class="xinfang-all"]/div/a'),callback= 'parse_item', follow=True)
)
def parse_item(self, response):
'''请求每页的url''''
counts = response.xpath('//div[@class="page-box"]/@data-total-count').extract_first()
pages = int(counts) // 10 2
#由于页数最多为100, 加条件判断
if pages > 100:
pages = 101
for page in range(1, pages):
url = response.url "pg" str(page)
yield scrapy.Request(url, callback=self.parse_detail, dont_filter=False)
def parse_detail(self, response):
'''解析网页内容'''
item = LianjiaItem()
item["title"] = response.xpath('//div[@class="resblock-have-find"]/span[3]/text()').extract_first()[1:]
infos = response.xpath('//ul[@class="resblock-list-wrapper"]/li')
for info in infos:
item["city"] = info.xpath('div/div[1]/a/text()').extract_first()
item["type"] = info.xpath('div/div[1]/span[1]/text()').extract_first()
item["status"] = info.xpath('div/div[1]/span[2]/text()').extract_first()
item["region"] = info.xpath('div/div[2]/span[1]/text()').extract_first()
item["street"] = info.xpath('div/div[2]/span[2]/text()').extract_first()
item["address"] = info.xpath('div/div[2]/a/text()').extract_first().replace(",", "")
item["area"] = info.xpath('div/div[@class="resblock-area"]/span/text()').extract_first()
item["average_price"] = "".join(info.xpath('div//div[@class="main-price"]//text()').extract()).replace(" ", "")
item["total_price"] = info.xpath('div//div[@class="second"]/text()').extract_first()
item["tags"] = ";".join(info.xpath('div//div[@class="resblock-tag"]//text()').extract()).replace(" ","").replace("n", "")
yield item
5 保存到Mysql数据库
在pipelines.py文件中编辑如下代码
代码语言:javascript复制import pymysql
class LianjiaPipeline(object):
def __init__(self):
#创建数据库连接对象
self.db = pymysql.connect(
host = "localhost",
user = "root",
password = "1234",
port = 3306,
db = "lianjia",
charset = "utf8"
)
self.cursor = self.db.cursor()
def process_item(self, item, spider):
#存储到数据库中
sql = "INSERT INTO xinfang(city, name, type, status, region, street, address, area, average_price, total_price, tags) VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)"
data = (item["city"], item["name"], item["type"], item["status"], item["region"], item["street"], item["address"], item["area"], item["average_price"], item["total_price"], item["tags"])
try:
self.cursor.execute(sql, data)
self.db.commit()
except:
self.db.rollback()
finally:
return item
6 反反爬措施
由于是批量性爬取, 有必要采取些反反爬措施, 我这里采用的是免费的IP代理. 在middlewares.py中编辑如下代码:
代码语言:javascript复制from scrapy import signals
import logging
import requests
class ProxyMiddleware(object):
def __init__(self, proxy):
self.logger = logging.getLogger(__name__)
self.proxy = proxy
@classmethod
def from_crawler(cls, crawler):
'''获取随机代理的api接口'''
settings = crawler.settings
return cls(
proxy=settings.get('RANDOM_PROXY')
)
def get_random_proxy(self):
'''获取随机代理'''
try:
response = requests.get(self.proxy)
if response.status_code == 200:
proxy = response.text
return proxy
except:
return False
def process_request(self, request, spider):
'''使用随机生成的代理请求'''
proxy = self.get_random_proxy()
if proxy:
url = 'http://' str(proxy)
self.logger.debug('本次使用代理' proxy)
request.meta['proxy'] = url
7 配置settings文件
代码语言:javascript复制import random
RANDOM_PROXY = "http://localhost:6686/random"
BOT_NAME = 'lianjia'
SPIDER_MODULES = ['lianjia.spiders']
NEWSPIDER_MODULE = 'lianjia.spiders'
ROBOTSTXT_OBEY = False
DOWNLOAD_DELAY = random.random()*2
COOKIES_ENABLED = False
DEFAULT_REQUEST_HEADERS = {
'Accept': 'text/html,application/xhtml xml,application/xml;q=0.9,*/*;q=0.8',
'Accept-Language': 'en',
}
DOWNLOADER_MIDDLEWARES = {
'lianjia.middlewares.ProxyMiddleware': 543
}
ITEM_PIPELINES = {
'lianjia.pipelines.LianjiaPipeline': 300,
}
8 执行项目文件
在mian.py中执行如下命令
代码语言:javascript复制from scrapy import cmdline
cmdline.execute('scrapy crawl xinfang'.split())
scrapy项目即可开始执行, 最后爬取到1万4千多条数据.