读完需要10分钟
速读仅需5分钟
在数据流转中或者日常的数据操作中,势必会有数据写入的过程,如果把一些数据写入一张数据库表中,如果写入量有100万,而重复的数据有90万,那么如何让这10%的数据能够更高更高效的写入。
在MySQL方向提供了Insert ignore into,insert into on duplicate,replace into这几种写入的方式,看起来好像都差不多,但是实际上在一些场景下的差异还比较大,如果使用不当,恰恰是性能的瓶颈。
整体上我分为两个大的部分,会分别测试这三种数据写入场景。
第一部分基于id,name的数据列,其中id为主键,自增
第二部分基于id,xid,name的数据列,其中id为主键,自增,xid为唯一性索引
至于为什么要这么分,我们可以先看结果再做讨论。
1
基于id,name的数据列,其中id为主键,自增
为了三种测试场景的基准对等,数据初始化会按照如下的三种方式来进行。
数据初始化
create table test_data(id int primary key auto_increment,name varchar(30)) engine=innodb; | |
---|---|
insert into test_data values(1,'aa'),(2,'bb'),(3,'cc'); | |
show create table test_dataG Table: test_dataCreate Table: CREATE TABLE `test_data` ( `id` int(11) NOT NULL AUTO_INCREMENT, `name` varchar(30) DEFAULT NULL, PRIMARY KEY (`id`)) ENGINE=InnoDB AUTO_INCREMENT=4 DEFAULT CHARSET=utf8 |
insert ignore
insert ignore into test_data values(1,'aa');Query OK, 0 rows affected, 1 warning (0.00 sec)>>show warnings; --------- ------ --------------------------------------- | Level | Code | Message | --------- ------ --------------------------------------- | Warning | 1062 | Duplicate entry '1' for key 'PRIMARY' | --------- ------ --------------------------------------- 1 row in set (0.00 sec) |
---|
show create table test_dataG Table: test_dataCreate Table: CREATE TABLE `test_data` ( `id` int(11) NOT NULL AUTO_INCREMENT, `name` varchar(30) DEFAULT NULL, PRIMARY KEY (`id`)) ENGINE=InnoDB AUTO_INCREMENT=4 DEFAULT CHARSET=utf8 |
insert ignore into test_data values(1,'aaa');Query OK, 0 rows affected, 1 warning (0.01 sec)>>show warnings; --------- ------ --------------------------------------- | Level | Code | Message | --------- ------ --------------------------------------- | Warning | 1062 | Duplicate entry '1' for key 'PRIMARY' | --------- ------ --------------------------------------- 1 row in set (0.00 sec) |
insert ignore into test_data values(4,'cc');Query OK, 1 row affected (0.01 sec) |
select * from test_data; ---- ------ | id | name | ---- ------ | 1 | aa || 2 | bb || 3 | cc || 4 | cc | ---- ------ 4 rows in set (0.00 sec) |
replace into场景
>>replace into test_data values(1,'aa');Query OK, 1 row affected (0.01 sec) |
---|
show create table test_dataG Table: test_dataCreate Table: CREATE TABLE `test_data` ( `id` int(11) NOT NULL AUTO_INCREMENT, `name` varchar(30) DEFAULT NULL, PRIMARY KEY (`id`)) ENGINE=InnoDB AUTO_INCREMENT=4 DEFAULT CHARSET=utf8 |
replace into test_data values(1,'aaa');Query OK, 2 rows affected (0.00 sec) |
replace into test_data values(4,'cc');Query OK, 1 row affected (0.00 sec) |
select *from test_data; ---- ------ | id | name | ---- ------ | 1 | aaa || 2 | bb || 3 | cc || 4 | cc | ---- ------ 4 rows in set (0.00 sec) |
insert into on duplicate场景
insert into test_data values(1,'aa') on duplicate key update id=id;Query OK, 0 rows affected (0.00 sec)insert into test_data values(1,'aa') on duplicate key update id=id, name=name;Query OK, 0 rows affected (0.00 sec) |
---|
show create table test_dataG Table: test_dataCreate Table: CREATE TABLE `test_data` ( `id` int(11) NOT NULL AUTO_INCREMENT, `name` varchar(30) DEFAULT NULL, PRIMARY KEY (`id`)) ENGINE=InnoDB AUTO_INCREMENT=4 DEFAULT CHARSET=utf8 |
insert into test_data values(1,'aaa') on duplicate key update id=id;Query OK, 0 rows affected (0.00 sec)insert into test_data values(1,'aaa') on duplicate key update id=id,name=name;Query OK, 0 rows affected (0.00 sec) |
insert into test_data values(4,'cc') on duplicate key update id=id;Query OK, 1 row affected (0.01 sec)insert into test_data values(4,'ccc') on duplicate key update id=id, name=name;Query OK, 0 rows affected (0.00 sec) |
select * from test_data; ---- ------ | id | name | ---- ------ | 1 | aa || 2 | bb || 3 | cc || 4 | cc | ---- ------ 4 rows in set (0.00 sec) |
小结:这三种场景的结果从自增列的处理方式来看是完全对等的,但是对于重复数据的处理方式还是存在差异。
相比而言,replace into和insert into on duplicate存在本质的区别,replace into是覆盖写,即删除原来的,写入新的。不光是主键列,其他列也会保持一致
insert into on duplicate则可以根据自己的需求来定制重复数据的处理策略,不会主动改变数据。
insert ignore into 在这种场景下最为通用,而且对于数据的侵入性最小。
所以如果要保证源端的数据基于主键完全一致,不管非主键列的数据是否一致,都需要完全覆盖,选择replace into是一种好的方法。
否则采用insert into on duplcate或者insert ignore into
2
基于id,xid,name的数据列,其中id为主键,自增,xid为唯一性索引
为了三种测试场景的基准对等,数据初始化会按照如下的三种方式来进行。
数据初始化
create table test_data(id int primary key auto_increment,xid int unique key,name varchar(30)) engine=innodb; | ||
---|---|---|
insert into test_data(xid,name) values(1,'aa'),(2,'bb'),(3,'cc');Query OK, 3 rows affected (0.01 sec)Records: 3 Duplicates: 0 Warnings: 0 | ||
select *from test_data; ---- ------ ------ | id | xid | name | ---- ------ ------ | 1 | 1 | aa || 2 | 2 | bb || 3 | 3 | cc | ---- ------ ------ 3 rows in set (0.00 sec) |
insert ignore into
insert ignore into test_data(xid,name) values(1,'aa');Query OK, 0 rows affected, 1 warning |
---|
CREATE TABLE `test_data` ( `id` int(11) NOT NULL AUTO_INCREMENT, `xid` int(11) DEFAULT NULL, `name` varchar(30) DEFAULT NULL, PRIMARY KEY (`id`), UNIQUE KEY `xid` (`xid`)) ENGINE=InnoDB AUTO_INCREMENT=5 DEFAULT CHARSET=utf8 |
insert ignore into test_data(xid,name) values(1,'aaa');Query OK, 0 rows affected, 1 warning (0.01 sec)mysql--root@localhost:test 18:58:13>>show warnings; --------- ------ ----------------------------------- | Level | Code | Message | --------- ------ ----------------------------------- | Warning | 1062 | Duplicate entry '1' for key 'xid' | --------- ------ ----------------------------------- |
insert ignore into test_data(xid,name) values(4,'dd');Query OK, 1 row affected (0.00 sec) |
Create Table: CREATE TABLE `test_data` ( `id` int(11) NOT NULL AUTO_INCREMENT, `xid` int(11) DEFAULT NULL, `name` varchar(30) DEFAULT NULL, PRIMARY KEY (`id`), UNIQUE KEY `xid` (`xid`)) ENGINE=InnoDB AUTO_INCREMENT=7 DEFAULT CHARSET=utf8 |
>select * from test_data; ---- ------ ------ | id | xid | name | ---- ------ ------ | 1 | 1 | aa || 2 | 2 | bb || 3 | 3 | cc || 6 | 4 | dd | ---- ------ ------ 4 rows in set (0.00 sec) |
replace into
replace into test_data(xid,name) values(1,'aa');Query OK, 2 rows affected (0.00 sec) |
---|
---- ------ ------ | id | xid | name | ---- ------ ------ | 2 | 2 | bb || 3 | 3 | cc || 4 | 1 | aa | ---- ------ ------ 3 rows in set (0.00 sec) |
replace into test_data(xid,name) values(1,'aaa');Query OK, 2 rows affected (0.01 sec) |
select *from test_data; ---- ------ ------ | id | xid | name | ---- ------ ------ | 2 | 2 | bb || 3 | 3 | cc || 5 | 1 | aaa | ---- ------ ------ |
replace into test_data(xid,name) values(4,'cc');Query OK, 1 row affected (0.00 sec) |
select *from test_data; ---- ------ ------ | id | xid | name | ---- ------ ------ | 2 | 2 | bb || 3 | 3 | cc || 5 | 1 | aaa || 6 | 4 | dd | ---- ------ ------ 4 rows in set (0.00 sec) |
insert into on duplicate
insert into test_data(xid,name) values(1,'aa') on duplicate key update xid=xid;Query OK, 0 rows affected (0.00 sec)insert into test_data(xid,name) values(1,'aa') on duplicate key update xid=xid, name=name;Query OK, 0 rows affected (0.01 sec) |
---|
---- ------ ------ | id | xid | name | ---- ------ ------ | 1 | 1 | aa || 2 | 2 | bb || 3 | 3 | cc | ---- ------ ------ 3 rows in set (0.00 sec) |
insert into test_data(xid,name) values(1,'aaa') on duplicate key update xid=xid;Query OK, 0 rows affected (0.01 sec)insert into test_data(xid,name) values(1,'aaa') on duplicate key update xid=xid,name=name;Query OK, 0 rows affected (0.00 sec) |
insert into test_data(xid,name) values(4,'cc') on duplicate key update xid=xid;Query OK, 1 row affected (0.01 sec)insert into test_data(xid,name) values(4,'ccc') on duplicate key update xid=xid, name=name;Query OK, 0 rows affected (0.00 sec) |
select * from test_data; ---- ------ ------ | id | xid | name | ---- ------ ------ | 1 | 1 | aa || 2 | 2 | bb || 3 | 3 | cc || 8 | 4 | cc | ---- ------ ------ 4 rows in set (0.00 sec) |
小结:在这个场景里面,可以看到三种场景的变化真是很大,而且区别也很明显。
insert ignore into如果不指定自增列,尽管没有写入数据,但是自增列依然会自增
replace into如果不指定自增列,会看到数据重新写入的效果已经非常明显,而且自增列始终会自动维护。
insert into on duplicate对于重复数据依然会消耗自增列值,实现相对更加灵活。