Sentinel 调用上下文环境实现原理(含原理图)

2020-02-17 11:21:57 浏览数 (1)

本节将详细介绍 Sentienl 的上下文环境管理机制。

1、Sentinel Context 调用上下文环境管理


我们从 sentinel-apache-dubbo-adapter 模块的 SentinelDubboProviderFilter 的实现中不难看出,在其入口处会首先调用 ContextUtil.enter(resourceName, application) 。那我们就从该方法开始来探究上下文环境管理机制。

说到 Sentinel 的调用上下文环境,那调用上下文环境中会保存哪些信息呢?我们先来看看 Context。

1.1 Context 详解

Context 类图如下:

  • Context 其核心属性与核心方法如下:
    • String name Sentinel 调用上下文环境的名称。
    • DefaultNode entranceNode 调用链的入口节点信息。
    • Entry curEntry 调用链中当前节点的信息。
    • boolean async 是否是异步调用上下文环境。
    • Entry 保存当前的调用信息,其主要核心属性:
    • private long createTime 资源调用的时间戳。
    • private Node curNode 该资源所对应的实时采集信息。
    • protected ResourceWrapper resourceWrapper 资源对象。
  • CtEntry 同步调用调用信息封装对象。
  • AsyncEntry 异步调用调用信息的封装对象。

对应的核心方法将在下文具体用到时再详细介绍。

1.2 创建调用上下文环境

ContextUtil#enter

代码语言:javascript复制
public static Context enter(String name, String origin) {  // @1
    if (Constants.CONTEXT_DEFAULT_NAME.equals(name)) {
            throw new ContextNameDefineException(
                "The "   Constants.CONTEXT_DEFAULT_NAME   " can't be permit to defined!");
    }
    return trueEnter(name, origin);   // @2
}

代码@1:首先我们来看一下其参数:

  • String name 上下文环境 Context 的名称。
  • String origin 该参数的含义在介绍集群限流时会详细介绍,从 dubbo 模块的适配来看,通常该值会传入当前应用的 application 名称。

代码@2:通过调用内部的 trueEnter 方法。

在进入 trueEnter 方法之前,我们先来看一下 ContextUtil 中两个最核心的属性:

首先使用 ThreadLocal 对象来存储线程上下文环境对象 Context。Map contextNameNodeMap ,其键为 context 的名称,用来缓存其对应的 EntranceNode 。

ContextUtil#trueEnter

代码语言:javascript复制
protected static Context trueEnter(String name, String origin) {
    Context context = contextHolder.get();   // @1 
    if (context == null) {
    Map<String, DefaultNode> localCacheNameMap = contextNameNodeMap;
        DefaultNode node = localCacheNameMap.get(name);   // @2
        if (node == null) {
        if (localCacheNameMap.size() > Constants.MAX_CONTEXT_NAME_SIZE) {   // @3
                     setNullContext();
                       return NULL_CONTEXT;
                } else {
                    try {
                            LOCK.lock();
                            node = contextNameNodeMap.get(name);   // @4
                            if (node == null) {
                                if (contextNameNodeMap.size() > Constants.MAX_CONTEXT_NAME_SIZE) {  
                                        setNullContext();
                                        return NULL_CONTEXT;
                                } else {
                                        node = new EntranceNode(new StringResourceWrapper(name, EntryType.IN), null);  // @5
                                        // Add entrance node.
                                        Constant.ROOT.addChild(node);                                                                                     // @6
                        Map<String, DefaultNode> newMap = new HashMap<>(contextNameNodeMap.size()   );
                                        newMap.putAll(contextNameNodeMap);
                                        newMap.put(name, node);
                                        contextNameNodeMap = newMap;
                                }
                            }
                    } finally {
                            LOCK.unlock();
                       }
            }
        }
        context = new Context(node, name);    // @7
        context.setOrigin(origin);
        contextHolder.set(context);    // @8
   }
  return context;
}

代码@1:从 threadLocal 中获取 Context 对象,线程首次获取时为空。

代码@2:根据 context 的名称尝试从缓存中去找对应的 Node,通常是 EntranceNode。即用来表示入口的节点Node 为 EntranceNode。

代码@3:如果 localCacheNameMap 已缓存的对象容量默认超过2000,则不纳入 Sentinel 限流,熔断等机制中来,即一个应用,默认不能定义 2000个 资源统计入口,以 一个 Dubbo 服务为例,一个 Dubbo 服务应用,如果超过2000个服务,则超过的部分不会应用 Sentinel 限流与熔断机制。

代码@4:锁应用的经典场景,dubbo check。

代码@5:为该 context name 创建一个对应的 EntranceNode。

代码@6:将创建的 EntranceNode 加入到根节点的子节点中,稍后重点讨论一下。

代码@7:创建 Context 对象,将 Context 对象中的入口节点设置为 新创建的 EntranceNode。

代码@8:将新创建的 Context 对象存入当前线程本地环境变量中(ThreadLocal)。

接下来先来探讨代码@6 Constants.ROOT.addChild(node)。

在 Sentinel 中,会定义一个固定根节点,其定义如下:

其资源名称为:machine-root。addChild 方法就是将节点添加到如下数据结构中:

1.3 移除调用上下文环境
代码语言:javascript复制
public static void exit() {
    Context context = contextHolder.get();
    if (context != null && context.getCurEntry() == null) {
        contextHolder.set(null);
    }
}

退出当前上下文环境,这里有一个条件就是当前的上下文环境的当前调用节点已经退出,否则无法移除,故使用建议:ContextUtil . exit 一定要在持有的 Entry 退出之后再调用。

1.4 异步上下文环境切换
代码语言:javascript复制
public static void runOnContext(Context context, Runnable f) {
    Context curContext = replaceContext(context);  // @1
    try {
        f.run();  // @2
    } finally {
        replaceContext(curContext);  // @3
    }
}

这里是异步调用上下文环境切换的实现原理,我们知道存在 ThreadLocal 中的数据是无法跨线程访问的,故一个线程中启动另外一个线程,上下文环境是无法直接被传递的,Sentinel 的思想是为先创建的线程再创建一个 Context,在运行子线程时,调用 runOnContext 来切换上下文环境。

Context 就介绍到这里了,我们接下来再来看一个与上下文环境管理密切相关的 Sentinel Slot 处理器:NodeSelectorSlot,通常也是 Sentinel Slot 处理链的第一个节点。

2、NodeSelectorSlot


2.1 NodeSelectorSlot 调用链概述

从该类的注释可以得出如下的结论:该类的作用是构建一颗虚拟调用树,我们接下来以一个Dubbo调用示例来说明。

正如上图所示:应用 A 向应用 order-servie 服务发起一个 RPC 服务,下订单,order-service 应用引入了 sentinel-apache-dubbo-adapter 相关依懒,会执行 SentinelDubboProviderFilter 过滤器,调用 Sentinel 相关的方法,对资源进行保护,然后下单服务中,首先会操作数据库,将本次数据库操作定义为资源:insertOrderSQL,然后再操作 redis,redis 的操作命名为资源 setRedisOp。其对应在内存中会生成如下调用链的结构图。

那上面这个调用链保存在线程上下文环境中,即 ThreadLocal 中。在 Sentinel 中使用 Node 来表示一个一个调用节点,其中 EntranceNode 表示调用链的入口,DefaultNode 表示普通节点,ClusterNode 表示集群节点,即同一个资源会统计整个集群中的信息。

从该类的注释我们可以得出上述的结论,接下来我们从源码的角度对其进行分析与理解。

2.2 源码分析 NodeSelectorSlot

NodeSelectorSlot 中只声明了一个唯一的成员变量,其声明如下:

代码语言:javascript复制
private volatile Map<String, DefaultNode> map = new HashMap<String, DefaultNode>();

定义一个 Map,其键为上下文环境 Context 的名称,通常是进入节点的名称,例如上面提到的 EntranceNode( dubbo:provider:com.a.b.OrderService:saveOrder(java.lang.String))。

注意:一个 NodeSelectorSlot 对象会被多个线程使用,其共享的维度为资源,即多个线程进入同一个资源保护的代码时,执行的是同一个 NodeSelectorSlot 对象。详细实现请参考上文中 CtSph # lookProcessChain 部分详解。

接下来重点看一下 NodeSelectorSlot 的核心方法 entry。

NodeSelectorSlot#entry

代码语言:javascript复制
public void entry(Context context, ResourceWrapper resourceWrapper, Object obj, int count, boolean prioritized, Object... args) // @1
        throws Throwable {
    DefaultNode node = map.get(context.getName());   // @2
    if (node == null) {                                                       // @3
        synchronized (this) {                                          // @4
            node = map.get(context.getName());
                if (node == null) {
            node = new DefaultNode(resourceWrapper, null);    // @5
                          HashMap<String, DefaultNode> cacheMap = new HashMap<String, DefaultNode>(map.size());
                    cacheMap.putAll(map);
                    cacheMap.put(context.getName(), node);
                    map = cacheMap;
                       // Build invocation tree
                    ((DefaultNode) context.getLastNode()).addChild(node);   // @6
              }
            }
    }
    context.setCurNode(node);                                                                  // @7
    fireEntry(context, resourceWrapper, node, count, prioritized, args);
}

代码@1:我们先来看看其参数:

  • Context context 调用上下文环境,该对象存储在 ThreadLocal,其名称在调用链的入口处设置。
  • ResourceWrapper resourceWrapper 资源的包装类,注意留意其 equals 与 hashCode 方法,判断两个对象是否相等的依据是资源名 称是否相同。
  • Object obj 参数。
  • int count 本次需要消耗的令牌数量。
  • boolean prioritized 请求是否按优先级排列。
  • Object… args 额外参数。

代码@2:如果缓存中存在对应该上下文环境的节点,则直接使用,并将其节点设置当前调用上下文的当前节点中(Context)。

代码@3:如果节点为空,则进入到节点创建流程,此过程需要加锁,见代码@4。

代码@5:创建一个新的 DefaultNode 。

代码@6:构建调用链,由于 NodeSelectorSlot 是第一个进入的处理器,故此时 Context 的 curEntry 为 null ,故这里就是创建与的上下文环境名称对应的节点会被添加到 ContextUtil 的 entry 创建的调用链入口节点(EntranceNode),然后顺便更新 Context 中的 Entry curEntry 属性,即再次验证了上面的图。

我们来总结一下 NodeSelectorSlot 作用:从官方的注释来看:构建一条调用链,更直接一点就是设置 Context 的 curEntry 属性。

关于 Sentinel 调用上下文环境实现原理就介绍到这里了。

如果您喜欢这篇文章,点【在看】与转发是一种美德,期待您的认可与鼓励,越努力越幸运。

思考题:首先在这里先“剧透”一下,Node 在 Sentinel 中的作用是持有资源的实时统计信息,将在下一篇文章介绍 StatisticSlot 时详细介绍。NodeSelectorSlot 中的 Map 中的键为什么是 Context 的 名称呢?这样设计的目的是什么,能有什么好处?


欢迎加入我的知识星球,一起交流源码,探讨架构,打造高质量的技术交流圈,长按如下二维码

中间件兴趣圈 知识星球 正在对如下话题展开如火如荼的讨论:

1、【让天下没有难学的Netty-网络通道篇】

1、Netty4 Channel概述(已发表)

2、Netty4 ChannelHandler概述(已发表)

3、Netty4事件处理传播机制(已发表)

4、Netty4服务端启动流程(已发表)

5、Netty4 NIO 客户端启动流程

6、Netty4 NIO线程模型分析

7、Netty4编码器、解码器实现原理

8、Netty4 读事件处理流程

9、Netty4 写事件处理流程

10、Netty4 NIO Channel其他方法详解

2、Java 并发框架(JUC) 探讨【面试神器】 3、源码分析Alibaba Sentienl 专栏背后的写作与学习技巧。

0 人点赞