特征锦囊:如何把分布修正为类正态分布?

2020-02-17 13:27:32 浏览数 (1)

今日锦囊

特征锦囊:如何把分布修正为类正态分布?

今天我们用的是一个新的数据集,也是在kaggle上的一个比赛,大家可以先去下载一下:

下载地址:https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data

代码语言:javascript复制
import pandas as pd
import numpy as np
# Plots
import seaborn as sns
import matplotlib.pyplot as plt

# 读取数据集
train = pd.read_csv('./data/house-prices-advanced-regression-techniques/train.csv')
train.head()

首先这个是一个价格预测的题目,在开始前我们需要看看分布情况,可以调用以下的方法来进行绘制:

代码语言:javascript复制
sns.set_style("white")
sns.set_color_codes(palette='deep')
f, ax = plt.subplots(figsize=(8, 7))
#Check the new distribution
sns.distplot(train['SalePrice'], color="b");
ax.xaxis.grid(False)
ax.set(ylabel="Frequency")
ax.set(xlabel="SalePrice")
ax.set(title="SalePrice distribution")
sns.despine(trim=True, left=True)
plt.show()

我们从结果可以看出,销售价格是右偏,而大多数机器学习模型都不能很好地处理非正态分布数据,所以我们可以应用log(1 x)转换来进行修正。那么具体我们可以怎么用Python代码实现呢?

代码语言:javascript复制
# log(1 x) 转换
train["SalePrice_log"] = np.log1p(train["SalePrice"])

sns.set_style("white")
sns.set_color_codes(palette='deep')
f, ax = plt.subplots(figsize=(8, 7))

sns.distplot(train['SalePrice_log'] , fit=norm, color="b");

# 得到正态分布的参数
(mu, sigma) = norm.fit(train['SalePrice_log'])

plt.legend(['Normal dist. ($mu=$ {:.2f} and $sigma=$ {:.2f} )'.format(mu, sigma)],
            loc='best')
ax.xaxis.grid(False)
ax.set(ylabel="Frequency")
ax.set(xlabel="SalePrice")
ax.set(title="SalePrice distribution")
sns.despine(trim=True, left=True)

plt.show()

以上的内容大家有什么疑问的吗,欢迎留言咨询哈~

0 人点赞