2.A* Search

2020-02-18 17:26:24 浏览数 (1)

A *伪代码
Search( grid, initial_point, goal_point ) :

1.初始化一个空的打开节点列表 2.使用以下内容初始化起始节点:

  • initial_point给出的x和y值
  • g = 0,其中g是每一步的成本
  • h由启发函数(当前坐标和目标的函数)给出
  1. 将新节点添加到打开的节点列表中
  2. while 打开节点的列表是非空的:
  • 按f值对打开的列表进行排序
  • 弹出最佳单元格(称为current单元格)。
  • 在路径中将单元格的坐标标记在网格中。
  • if current单元格是goal单元格:
    • 返回单元格
  • else将搜索范围扩展到current节点的邻居。这包括以下步骤:
    • 检查网格中的每个相邻单元,以确保该单元为空:它尚未关闭且没有障碍。
    • 如果单元格为空,请计算成本(g值)和启发式方法,然后将其添加到打开的节点列表中
    • 将单元格标记为关闭。
  1. 如果由于打开的节点列表为空而退出while循环,则表明您用完了新节点以进行探索,但未找到路径。
代码语言:javascript复制
#include <algorithm>  // for sort
#include <fstream>
#include <iostream>
#include <sstream>
#include <string>
#include <vector>
using std::cout;
using std::ifstream;
using std::istringstream;
using std::sort;
using std::string;
using std::vector;
using std::abs;

// State classes
enum class State { kEmpty, kObstacle, kClosed, kPath, kStart, kFinish };

// Directional deltas
const int delta[4][2]{ {-1, 0}, {0, -1}, {1, 0}, {0, 1} };


vector<State> ParseLine(string line) {
    istringstream sline(line);
    int n;
    char c;
    vector<State> row;
    while (sline >> n >> c && c == ',') {
        if (n == 0) {
            row.push_back(State::kEmpty);
        }
        else {
            row.push_back(State::kObstacle);
        }
    }
    return row;
}


vector<vector<State>> ReadBoardFile(string path) {
    ifstream myfile(path);
    vector<vector<State>> board{};
    if (myfile) {
        string line;
        while (getline(myfile, line)) {
            vector<State> row = ParseLine(line);
            board.push_back(row);
        }
    }
    return board;
}


/**
 * Compare the F values of two cells.
 */
bool Compare(const vector<int> a, const vector<int> b) {
    int f1 = a[2]   a[3]; // f1 = g1   h1
    int f2 = b[2]   b[3]; // f2 = g2   h2
    return f1 > f2;
}


/**
 * Sort the two-dimensional vector of ints in descending order.
 */
void CellSort(vector<vector<int>>* v) {
    sort(v->begin(), v->end(), Compare);
}


// Calculate the manhattan distance
int Heuristic(int x1, int y1, int x2, int y2) {
    return abs(x2 - x1)   abs(y2 - y1);
}


/**
 * Check that a cell is valid: on the grid, not an obstacle, and clear.
 */
bool CheckValidCell(int x, int y, vector<vector<State>>& grid) {
    bool on_grid_x = (x >= 0 && x < grid.size());
    bool on_grid_y = (y >= 0 && y < grid[0].size());
    if (on_grid_x && on_grid_y)
        return grid[x][y] == State::kEmpty;
    return false;
}


/**
 * Add a node to the open list and mark it as open.
 */
void AddToOpen(int x, int y, int g, int h, vector<vector<int>>& openlist, vector<vector<State>>& grid) {
    // Add node to open vector, and mark grid cell as closed.
    openlist.push_back(vector<int>{x, y, g, h});
    grid[x][y] = State::kClosed;
}


/**
 * Expand current nodes's neighbors and add them to the open list.
 */
void ExpandNeighbors(const vector<int>& current, int goal[2], vector<vector<int>>& openlist, vector<vector<State>>& grid) {
    // Get current node's data.
    int x = current[0];
    int y = current[1];
    int g = current[2];

    // Loop through current node's potential neighbors.
    for (int i = 0; i < 4; i  ) {
        int x2 = x   delta[i][0];
        int y2 = y   delta[i][1];

        // Check that the potential neighbor's x2 and y2 values are on the grid and not closed.
        if (CheckValidCell(x2, y2, grid)) {
            // Increment g value and add neighbor to open list.
            int g2 = g   1;
            int h2 = Heuristic(x2, y2, goal[0], goal[1]);
            AddToOpen(x2, y2, g2, h2, openlist, grid);
        }
    }
}


/**
 * Implementation of A* search algorithm
 */
vector<vector<State>> Search(vector<vector<State>> grid, int init[2], int goal[2]) {
    // Create the vector of open nodes.
    vector<vector<int>> open{};

    // Initialize the starting node.
    int x = init[0];
    int y = init[1];
    int g = 0;
    int h = Heuristic(x, y, goal[0], goal[1]);
    AddToOpen(x, y, g, h, open, grid);

    while (open.size() > 0) {
        // Get the next node
        CellSort(&open);
        auto current = open.back();
        open.pop_back();
        x = current[0];
        y = current[1];
        grid[x][y] = State::kPath;

        // Check if we're done.
        if (x == goal[0] && y == goal[1]) {
            grid[init[0]][init[1]] = State::kStart;
            grid[goal[0]][goal[1]] = State::kFinish;
            return grid;
        }

        // If we're not done, expand search to current node's neighbors.
        ExpandNeighbors(current, goal, open, grid);
    }

    // We've run out of new nodes to explore and haven't found a path.
    cout << "No path found!" << "n";
    return std::vector<vector<State>>{};
}


string CellString(State cell) {
    switch (cell) {
    case State::kObstacle: return "山     ";
    case State::kPath: return     "路径   ";
    case State::kStart: return    "起点   ";
    case State::kFinish: return   "终点   ";
    default: return               "0      ";
    }
}


void PrintBoard(const vector<vector<State>> board) {
    for (int i = 0; i < board.size(); i  ) {
        for (int j = 0; j < board[i].size(); j  ) {
            cout << CellString(board[i][j]);
        }
        cout << "n";
    }
}

//#include "test.cpp"

int main() {
    int init[2]{ 0, 0 };
    int goal[2]{ 4, 5 };
    auto board = ReadBoardFile("1.board");
    auto solution = Search(board, init, goal);
    PrintBoard(solution);
    system("pause");
    // Tests
   /* TestHeuristic();
    TestAddToOpen();
    TestCompare();
    TestSearch();
    TestCheckValidCell();
    TestExpandNeighbors();*/
}

0 人点赞