ELK Stack系列之基础篇(八) - Elasticsearch原理总结(图示)

2020-02-18 20:18:14 浏览数 (1)

前言

通过前面的知识,我们已经了解到了ELk到底是什么、以及他们的工作原理、ES集群架构、专有名词的一些解释。在进入下一阶段ES实操学习环节前,那么今天我将以图解的方式将ELK重点以及ES的相关逻辑进行一个总结;

================================================================================================

随着央视诗词大会的热播,小A开始对中华诗词感兴趣,最喜欢的就是飞花令的环节。但是小A呢怎么也回想不起来记得哪些诗词?(篇幅比较长,一定要看完!!)

但是由于小A很久没有背过诗词了,“飞”一个字很难说出一句,很多之前很熟悉的诗句也想不起来了。。。。

倒排索引

小牛老师:但是我让你说出带“前”字的诗句,由于没有索引,你只能遍历脑海中所有诗词,当你的脑海中诗词量大的时候,就很难在短时间内得到结果了。

索引量爆炸

搜索引擎原理

Elasticsearch 总结

小牛老师:但是 Lucene 还是一个库,必须要懂一点搜索引擎原理的人才能用的好,所以后来又有人基于 Lucene 进行封装,写出了 Elasticsearch。

Elasticsearch 基本概念总结

小牛老师:类型是用来定义数据结构的,你可以认为是 MySQL 中的一张表。文档就是最终的数据了,你可以认为一个文档就是一条记录

小牛老师:比如一首诗,有诗题、作者、朝代、字数、诗内容等字段,那么首先,我们可以建立一个名叫 Poems 的索引,然后创建一个名叫 Poem 的类型,类型是通过 Mapping 来定义每个字段的类型。(马上要讲到)

比如诗题、作者、朝代都是 Keyword 类型,诗内容是 Text 类型,而字数是 Integer 类型,***就是把数据组织成 Json 格式存放进去了。

小牛老师:这个问题问得好,这涉及到分词的问题,Keyword 类型是不会分词的,直接根据字符串内容建立反向索引,Text 类型在存入 Elasticsearch 的时候,会先分词,然后根据分词后的内容建立反向索引。

小牛老师:之前我们说过,Elasticsearch 把操作都封装成了 HTTP 的 API,我们只要给 Elasticsearch 发送 HTTP 请求就行。比如使用 curl -XPUT 'http://ip:port/poems',就能建立一个名为 Poems 的索引,其他操作也是类似的。

Elasticsearch 分布式原理

小牛老师:注意,只有建立索引和类型需要经过 Master,数据的写入有一个简单的 Routing 规则,可以 Route 到集群中的任意节点,所以数据写入压力是分散在整个集群的。

ELK 系统

小牛老师:

其实很多公司都用 Elasticsearch 搭建 ELK 系统,也就是日志分析系统。其中 E 就是 Elasticsearch,L 是 Logstash,是一个日志收集系统,K 是 Kibana,是一个数据可视化平台。

小牛老师:

分析日志的用处可大了,你想,假如一个分布式系统有 1000 台机器,系统出现故障时,我要看下日志,还得一台一台登录上去查看,是不是非常麻烦?所以呢?

小牛老师:

如果日志接入了 ELK 系统就不一样。比如系统运行过程中,突然出现了异常,在日志中就能及时反馈,日志进入 ELK 系统中,我们直接在 Kibana 就能看到日志情况。如果再接入一些实时计算模块,还能做实时报警功能。

总结:

  • 反向索引又叫倒排索引,是根据文章内容中的关键字建立索引。
  • 搜索引擎原理就是建立反向索引
  • 索引是ES搜索数据的一种方式。它一种数据结构。通过对文本进行数据建造让搜索变得非常的迅速。所以叫索引的意思。
  • Elasticsearch 在 Lucene 的基础上进行封装,实现了分布式搜索引擎。
  • Elasticsearch 中的索引、类型和文档的概念比较重要,类似于 MySQL 中的数据库、表和行。
  • Elasticsearch 也是 Master-slave 架构,也实现了数据的分片和备份。
  • Elasticsearch 一个典型应用就是 ELK 日志分析系统
  • 接下来,我们将ES API接口的使用。(非常重要)

0 人点赞