快速学习-HBaseAPI操作

2020-02-21 15:33:46 浏览数 (1)

第6章 HBase API操作

6.1 环境准备

新建项目后在pom.xml中添加依赖:

代码语言:javascript复制
<dependency>
    <groupId>org.apache.hbase</groupId>
    <artifactId>hbase-server</artifactId>
    <version>1.3.1</version>
</dependency>

<dependency>
    <groupId>org.apache.hbase</groupId>
    <artifactId>hbase-client</artifactId>
    <version>1.3.1</version>
</dependency>

<dependency>
	<groupId>jdk.tools</groupId>
	<artifactId>jdk.tools</artifactId>
	<version>1.8</version>
	<scope>system</scope>
	<systemPath>${JAVA_HOME}/lib/tools.jar</systemPath>
</dependency>

6.2 HBaseAPI

6.2.1 获取Configuration对象

代码语言:javascript复制
public static Configuration conf;
static{
	//使用HBaseConfiguration的单例方法实例化
	conf = HBaseConfiguration.create();
conf.set("hbase.zookeeper.quorum", "192.168.9.102");
conf.set("hbase.zookeeper.property.clientPort", "2181");
}

6.2.2 判断表是否存在

代码语言:javascript复制
public static boolean isTableExist(String tableName) throws MasterNotRunningException,
 ZooKeeperConnectionException, IOException{
	//在HBase中管理、访问表需要先创建HBaseAdmin对象
//Connection connection = ConnectionFactory.createConnection(conf);
//HBaseAdmin admin = (HBaseAdmin) connection.getAdmin();
	HBaseAdmin admin = new HBaseAdmin(conf);
	return admin.tableExists(tableName);
}

6.2.3 创建表

代码语言:javascript复制
public static void createTable(String tableName, String... columnFamily) throws
 MasterNotRunningException, ZooKeeperConnectionException, IOException{
	HBaseAdmin admin = new HBaseAdmin(conf);
	//判断表是否存在
	if(isTableExist(tableName)){
		System.out.println("表"   tableName   "已存在");
		//System.exit(0);
	}else{
		//创建表属性对象,表名需要转字节
		HTableDescriptor descriptor = new HTableDescriptor(TableName.valueOf(tableName));
		//创建多个列族
		for(String cf : columnFamily){
			descriptor.addFamily(new HColumnDescriptor(cf));
		}
		//根据对表的配置,创建表
		admin.createTable(descriptor);
		System.out.println("表"   tableName   "创建成功!");
	}
}

6.2.4 删除表

代码语言:javascript复制
public static void dropTable(String tableName) throws MasterNotRunningException,
 ZooKeeperConnectionException, IOException{
	HBaseAdmin admin = new HBaseAdmin(conf);
	if(isTableExist(tableName)){
		admin.disableTable(tableName);
		admin.deleteTable(tableName);
		System.out.println("表"   tableName   "删除成功!");
	}else{
		System.out.println("表"   tableName   "不存在!");
	}
}

6.2.5 向表中插入数据

代码语言:javascript复制
public static void addRowData(String tableName, String rowKey, String columnFamily, String
 column, String value) throws IOException{
	//创建HTable对象
	HTable hTable = new HTable(conf, tableName);
	//向表中插入数据
	Put put = new Put(Bytes.toBytes(rowKey));
	//向Put对象中组装数据
	put.add(Bytes.toBytes(columnFamily), Bytes.toBytes(column), Bytes.toBytes(value));
	hTable.put(put);
	hTable.close();
	System.out.println("插入数据成功");
}

6.2.6 删除多行数据

代码语言:javascript复制
public static void deleteMultiRow(String tableName, String... rows) throws IOException{
	HTable hTable = new HTable(conf, tableName);
	List<Delete> deleteList = new ArrayList<Delete>();
	for(String row : rows){
		Delete delete = new Delete(Bytes.toBytes(row));
		deleteList.add(delete);
	}
	hTable.delete(deleteList);
	hTable.close();
}

6.2.7 获取所有数据

代码语言:javascript复制
public static void getAllRows(String tableName) throws IOException{
	HTable hTable = new HTable(conf, tableName);
	//得到用于扫描region的对象
	Scan scan = new Scan();
	//使用HTable得到resultcanner实现类的对象
	ResultScanner resultScanner = hTable.getScanner(scan);
	for(Result result : resultScanner){
		Cell[] cells = result.rawCells();
		for(Cell cell : cells){
			//得到rowkey
			System.out.println("行键:"   Bytes.toString(CellUtil.cloneRow(cell)));
			//得到列族
			System.out.println("列族"   Bytes.toString(CellUtil.cloneFamily(cell)));
			System.out.println("列:"   Bytes.toString(CellUtil.cloneQualifier(cell)));
			System.out.println("值:"   Bytes.toString(CellUtil.cloneValue(cell)));
		}
	}
}

6.2.8 获取某一行数据

代码语言:javascript复制
public static void getRow(String tableName, String rowKey) throws IOException{
	HTable table = new HTable(conf, tableName);
	Get get = new Get(Bytes.toBytes(rowKey));
	//get.setMaxVersions();显示所有版本
    //get.setTimeStamp();显示指定时间戳的版本
	Result result = table.get(get);
	for(Cell cell : result.rawCells()){
		System.out.println("行键:"   Bytes.toString(result.getRow()));
		System.out.println("列族"   Bytes.toString(CellUtil.cloneFamily(cell)));
		System.out.println("列:"   Bytes.toString(CellUtil.cloneQualifier(cell)));
		System.out.println("值:"   Bytes.toString(CellUtil.cloneValue(cell)));
		System.out.println("时间戳:"   cell.getTimestamp());
	}
}

6.2.9 获取某一行指定“列族:列”的数据

代码语言:javascript复制
public static void getRowQualifier(String tableName, String rowKey, String family, String
 qualifier) throws IOException{
	HTable table = new HTable(conf, tableName);
	Get get = new Get(Bytes.toBytes(rowKey));
	get.addColumn(Bytes.toBytes(family), Bytes.toBytes(qualifier));
	Result result = table.get(get);
	for(Cell cell : result.rawCells()){
		System.out.println("行键:"   Bytes.toString(result.getRow()));
		System.out.println("列族"   Bytes.toString(CellUtil.cloneFamily(cell)));
		System.out.println("列:"   Bytes.toString(CellUtil.cloneQualifier(cell)));
		System.out.println("值:"   Bytes.toString(CellUtil.cloneValue(cell)));
	}
}

6.3 MapReduce

通过HBase的相关JavaAPI,我们可以实现伴随HBase操作的MapReduce过程,比如使用MapReduce将数据从本地文件系统导入到HBase的表中,比如我们从HBase中读取一些原始数据后使用MapReduce做数据分析。

6.3.1 官方HBase-MapReduce

  1. 查看HBase的MapReduce任务的执行
代码语言:javascript复制
$ bin/hbase mapredcp
  1. 环境变量的导入 (1)执行环境变量的导入(临时生效,在命令行执行下述操作)
代码语言:javascript复制
$ export HBASE_HOME=/opt/module/hbase-1.3.1
$ export HADOOP_HOME=/opt/module/hadoop-2.7.2
$ export HADOOP_CLASSPATH=`${HBASE_HOME}/bin/hbase mapredcp`

(2)永久生效:在/etc/profile配置

代码语言:javascript复制
export HBASE_HOME=/opt/module/hbase-1.3.1
export HADOOP_HOME=/opt/module/hadoop-2.7.2

并在hadoop-env.sh中配置:(注意:在for循环之后配)

代码语言:javascript复制
export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:/opt/module/hbase/lib/*
  1. 运行官方的MapReduce任务 – 案例一:统计Student表中有多少行数据
代码语言:javascript复制
$ /opt/module/hadoop-2.7.2/bin/yarn jar lib/hbase-server-1.3.1.jar rowcounter student

– 案例二:使用MapReduce将本地数据导入到HBase 1)在本地创建一个tsv格式的文件:fruit.tsv

代码语言:javascript复制
1001	Apple	Red
1002	Pear		Yellow
1003	Pineapple	Yellow

2)创建HBase表

代码语言:javascript复制
hbase(main):001:0> create 'fruit','info'

3)在HDFS中创建input_fruit文件夹并上传fruit.tsv文件

代码语言:javascript复制
$ /opt/module/hadoop-2.7.2/bin/hdfs dfs -mkdir /input_fruit/
$ /opt/module/hadoop-2.7.2/bin/hdfs dfs -put fruit.tsv /input_fruit/

4)执行MapReduce到HBase的fruit表中

代码语言:javascript复制
$ /opt/module/hadoop-2.7.2/bin/yarn jar lib/hbase-server-1.3.1.jar importtsv 
-Dimporttsv.columns=HBASE_ROW_KEY,info:name,info:color fruit 
hdfs://hadoop102:9000/input_fruit

5)使用scan命令查看导入后的结果

代码语言:javascript复制
hbase(main):001:0> scan ‘fruit’

6.3.2 自定义HBase-MapReduce1

目标:将fruit表中的一部分数据,通过MR迁入到fruit_mr表中。 分步实现:

  1. 构建ReadFruitMapper类,用于读取fruit表中的数据
代码语言:javascript复制
public class ReadFruitMapper extends TableMapper<ImmutableBytesWritable, Put> {

	@Override
	protected void map(ImmutableBytesWritable key, Result value, Context context) 
	throws IOException, InterruptedException {
	//将fruit的name和color提取出来,相当于将每一行数据读取出来放入到Put对象中。
		Put put = new Put(key.get());
		//遍历添加column行
		for(Cell cell: value.rawCells()){
			//添加/克隆列族:info
			if("info".equals(Bytes.toString(CellUtil.cloneFamily(cell)))){
				//添加/克隆列:name
				if("name".equals(Bytes.toString(CellUtil.cloneQualifier(cell)))){
					//将该列cell加入到put对象中
					put.add(cell);
					//添加/克隆列:color
				}else if("color".equals(Bytes.toString(CellUtil.cloneQualifier(cell)))){
					//向该列cell加入到put对象中
					put.add(cell);
				}
			}
		}
		//将从fruit读取到的每行数据写入到context中作为map的输出
		context.write(key, put);
	}
}
  1. 构建WriteFruitMRReducer类,用于将读取到的fruit表中的数据写入到fruit_mr表中
代码语言:javascript复制
public class WriteFruitMRReducer extends TableReducer<ImmutableBytesWritable, Put, NullWritable> {
	@Override
	protected void reduce(ImmutableBytesWritable key, Iterable<Put> values, Context context) 
	throws IOException, InterruptedException {
		//读出来的每一行数据写入到fruit_mr表中
		for(Put put: values){
			context.write(NullWritable.get(), put);
		}
	}
}
  1. 构建Fruit2FruitMRRunner extends Configured implements Tool用于组装运行Job任务
代码语言:javascript复制
//组装Job
	public int run(String[] args) throws Exception {
		//得到Configuration
		Configuration conf = this.getConf();
		//创建Job任务
		Job job = Job.getInstance(conf, this.getClass().getSimpleName());
		job.setJarByClass(Fruit2FruitMRRunner.class);

		//配置Job
		Scan scan = new Scan();
		scan.setCacheBlocks(false);
		scan.setCaching(500);

		//设置Mapper,注意导入的是mapreduce包下的,不是mapred包下的,后者是老版本
		TableMapReduceUtil.initTableMapperJob(
		"fruit", //数据源的表名
		scan, //scan扫描控制器
		ReadFruitMapper.class,//设置Mapper类
		ImmutableBytesWritable.class,//设置Mapper输出key类型
		Put.class,//设置Mapper输出value值类型
		job//设置给哪个JOB
		);
		//设置Reducer
		TableMapReduceUtil.initTableReducerJob("fruit_mr", WriteFruitMRReducer.class, job);
		//设置Reduce数量,最少1个
		job.setNumReduceTasks(1);

		boolean isSuccess = job.waitForCompletion(true);
		if(!isSuccess){
			throw new IOException("Job running with error");
		}
		return isSuccess ? 0 : 1;
	}
  1. 主函数中调用运行该Job任务
代码语言:javascript复制
public static void main( String[] args ) throws Exception{
	Configuration conf = HBaseConfiguration.create();
	int status = ToolRunner.run(conf, new Fruit2FruitMRRunner(), args);
	System.exit(status);
}
  1. 打包运行任务
代码语言:javascript复制
$ /opt/module/hadoop-2.7.2/bin/yarn jar ~/softwares/jars/hbase-0.0.1-SNAPSHOT.jar
 com.z.hbase.mr1.Fruit2FruitMRRunner

提示:运行任务前,如果待数据导入的表不存在,则需要提前创建。 提示:maven打包命令:-P local clean package或-P dev clean package install(将第三方jar包一同打包,需要插件:maven-shade-plugin)

6.3.3 自定义HBase-MapReduce2

目标:实现将HDFS中的数据写入到HBase表中。 分步实现:

  1. 构建ReadFruitFromHDFSMapper于读取HDFS中的文件数据
代码语言:javascript复制
public class ReadFruitFromHDFSMapper extends Mapper<LongWritable, Text, ImmutableBytesWritable, Put> {
	@Override
	protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
		//从HDFS中读取的数据
		String lineValue = value.toString();
		//读取出来的每行数据使用t进行分割,存于String数组
		String[] values = lineValue.split("t");
		
		//根据数据中值的含义取值
		String rowKey = values[0];
		String name = values[1];
		String color = values[2];
		
		//初始化rowKey
		ImmutableBytesWritable rowKeyWritable = new ImmutableBytesWritable(Bytes.toBytes(rowKey));
		
		//初始化put对象
		Put put = new Put(Bytes.toBytes(rowKey));
		
		//参数分别:列族、列、值  
        put.add(Bytes.toBytes("info"), Bytes.toBytes("name"),  Bytes.toBytes(name)); 
        put.add(Bytes.toBytes("info"), Bytes.toBytes("color"),  Bytes.toBytes(color)); 
        
        context.write(rowKeyWritable, put);
	}
}
  1. 构建WriteFruitMRFromTxtReducer类
代码语言:javascript复制
public class WriteFruitMRFromTxtReducer extends TableReducer<ImmutableBytesWritable, Put, NullWritable> {
	@Override
	protected void reduce(ImmutableBytesWritable key, Iterable<Put> values, Context context) throws IOException, InterruptedException {
		//读出来的每一行数据写入到fruit_hdfs表中
		for(Put put: values){
			context.write(NullWritable.get(), put);
		}
	}
}
  1. 创建Txt2FruitRunner组装Job
代码语言:javascript复制
public int run(String[] args) throws Exception {
	//得到Configuration
	Configuration conf = this.getConf();
	
	//创建Job任务
	Job job = Job.getInstance(conf, this.getClass().getSimpleName());
	job.setJarByClass(Txt2FruitRunner.class);
	Path inPath = new Path("hdfs://hadoop102:9000/input_fruit/fruit.tsv");
	FileInputFormat.addInputPath(job, inPath);
	
	//设置Mapper
	job.setMapperClass(ReadFruitFromHDFSMapper.class);
	job.setMapOutputKeyClass(ImmutableBytesWritable.class);
	job.setMapOutputValueClass(Put.class);
	
	//设置Reducer
	TableMapReduceUtil.initTableReducerJob("fruit_mr", WriteFruitMRFromTxtReducer.class, job);
	
	//设置Reduce数量,最少1个
	job.setNumReduceTasks(1);
	
	boolean isSuccess = job.waitForCompletion(true);
	if(!isSuccess){
		throw new IOException("Job running with error");
	}
	
	return isSuccess ? 0 : 1;
}
  1. 调用执行Job
代码语言:javascript复制
public static void main(String[] args) throws Exception {
		Configuration conf = HBaseConfiguration.create();
	    int status = ToolRunner.run(conf, new Txt2FruitRunner(), args);
	    System.exit(status);
}
  1. 打包运行
代码语言:javascript复制
$ /opt/module/hadoop-2.7.2/bin/yarn jar hbase-0.0.1-SNAPSHOT.jar com.atguigu.hbase.mr2.Txt2FruitRunner

提示:运行任务前,如果待数据导入的表不存在,则需要提前创建之。 提示:maven打包命令:-P local clean package或-P dev clean package install(将第三方jar包一同打包,需要插件:maven-shade-plugin)

6.4 与Hive的集成

6.4.1 HBase与Hive的对比

  1. Hive (1) 数据仓库 Hive的本质其实就相当于将HDFS中已经存储的文件在Mysql中做了一个双射关系,以方便使用HQL去管理查询。 (2) 用于数据分析、清洗 Hive适用于离线的数据分析和清洗,延迟较高。 (3) 基于HDFS、MapReduce Hive存储的数据依旧在DataNode上,编写的HQL语句终将是转换为MapReduce代码执行。
  2. HBase (1) 数据库 是一种面向列存储的非关系型数据库。 (2) 用于存储结构化和非结构化的数据 适用于单表非关系型数据的存储,不适合做关联查询,类似JOIN等操作。 (3) 基于HDFS 数据持久化存储的体现形式是Hfile,存放于DataNode中,被ResionServer以region的形式进行管理。 (4) 延迟较低,接入在线业务使用 面对大量的企业数据,HBase可以直线单表大量数据的存储,同时提供了高效的数据访问速度。

6.4.2 HBase与Hive集成使用

尖叫提示:HBase与Hive的集成在最新的两个版本中无法兼容。所以,我们只能含着泪勇敢的重新编译:hive-hbase-handler-1.2.2.jar!!好气!!

环境准备 因为我们后续可能会在操作Hive的同时对HBase也会产生影响,所以Hive需要持有操作HBase的Jar,那么接下来拷贝Hive所依赖的Jar包(或者使用软连接的形式)。

代码语言:javascript复制
export HBASE_HOME=/opt/module/hbase
export HIVE_HOME=/opt/module/hive

ln -s $HBASE_HOME/lib/hbase-common-1.3.1.jar  $HIVE_HOME/lib/hbase-common-1.3.1.jar
ln -s $HBASE_HOME/lib/hbase-server-1.3.1.jar $HIVE_HOME/lib/hbase-server-1.3.1.jar
ln -s $HBASE_HOME/lib/hbase-client-1.3.1.jar $HIVE_HOME/lib/hbase-client-1.3.1.jar
ln -s $HBASE_HOME/lib/hbase-protocol-1.3.1.jar $HIVE_HOME/lib/hbase-protocol-1.3.1.jar
ln -s $HBASE_HOME/lib/hbase-it-1.3.1.jar $HIVE_HOME/lib/hbase-it-1.3.1.jar
ln -s $HBASE_HOME/lib/htrace-core-3.1.0-incubating.jar $HIVE_HOME/lib/htrace-core-3.1.0-incubating.jar
ln -s $HBASE_HOME/lib/hbase-hadoop2-compat-1.3.1.jar $HIVE_HOME/lib/hbase-hadoop2-compat-1.3.1.jar
ln -s $HBASE_HOME/lib/hbase-hadoop-compat-1.3.1.jar $HIVE_HOME/lib/hbase-hadoop-compat-1.3.1.jar

同时在hive-site.xml中修改zookeeper的属性,如下:

代码语言:javascript复制
<property>
  <name>hive.zookeeper.quorum</name>
  <value>hadoop102,hadoop103,hadoop104</value>
  <description>The list of ZooKeeper servers to talk to. This is only needed for read/write locks.</description>
</property>
<property>
  <name>hive.zookeeper.client.port</name>
  <value>2181</value>
  <description>The port of ZooKeeper servers to talk to. This is only needed for read/write locks.</description>
</property>
  1. 案例一 目标:建立Hive表,关联HBase表,插入数据到Hive表的同时能够影响HBase表。 分步实现: (1) 在Hive中创建表同时关联HBase
代码语言:javascript复制
CREATE TABLE hive_hbase_emp_table(
empno int,
ename string,
job string,
mgr int,
hiredate string,
sal double,
comm double,
deptno int)
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
WITH SERDEPROPERTIES ("hbase.columns.mapping" = ":key,info:ename,info:job,info:mgr,info:hiredate,info:sal,info:comm,info:deptno")
TBLPROPERTIES ("hbase.table.name" = "hbase_emp_table");

提示:完成之后,可以分别进入Hive和HBase查看,都生成了对应的表

(2) 在Hive中创建临时中间表,用于load文件中的数据 提示:不能将数据直接load进Hive所关联HBase的那张表中

代码语言:javascript复制
CREATE TABLE emp(
empno int,
ename string,
job string,
mgr int,
hiredate string,
sal double,
comm double,
deptno int)
row format delimited fields terminated by 't';

(3) 向Hive中间表中load数据

代码语言:javascript复制
hive> load data local inpath '/home/admin/softwares/data/emp.txt' into table emp;

(4) 通过insert命令将中间表中的数据导入到Hive关联HBase的那张表中

代码语言:javascript复制
hive> insert into table hive_hbase_emp_table select * from emp;

(5) 查看Hive以及关联的HBase表中是否已经成功的同步插入了数据

代码语言:javascript复制
Hive:
hive> select * from hive_hbase_emp_table;
HBase:
hbase> scan ‘hbase_emp_table’
  1. 案例二 目标:在HBase中已经存储了某一张表hbase_emp_table,然后在Hive中创建一个外部表来关联HBase中的hbase_emp_table这张表,使之可以借助Hive来分析HBase这张表中的数据。
代码语言:javascript复制
注:该案例2紧跟案例1的脚步,所以完成此案例前,请先完成案例1。

分步实现: (1) 在Hive中创建外部表

代码语言:javascript复制
CREATE EXTERNAL TABLE relevance_hbase_emp(
empno int,
ename string,
job string,
mgr int,
hiredate string,
sal double,
comm double,
deptno int)
STORED BY 
'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
WITH SERDEPROPERTIES ("hbase.columns.mapping" = 
":key,info:ename,info:job,info:mgr,info:hiredate,info:sal,info:comm,info:deptno") 
TBLPROPERTIES ("hbase.table.name" = "hbase_emp_table");

(2) 关联后就可以使用Hive函数进行一些分析操作了

代码语言:javascript复制
hive (default)> select * from relevance_hbase_emp;

0 人点赞