浮点数量化为定点
1. 这篇博客将要讨论什么?
说来惭愧,作为计算机科班出身的人,计算机基础知识掌握并不扎实,这里的基础指的是计算机体系结构中的内容,诸如数据的表示和处理,如float的表示和运算等。看《CSAPP》方知人家老外把这个东西当成重中之重,大量详细的原理介绍,并配套大量例题。当初本科学的时候,很简单的了解了下概念而已,所以应该直接将《CSAPP》当做教材来用,里面习题全做,这样CS出来的基本知识将掌握的很扎实。
学艺不精的后果就在于:学而不思则罔。圣人太厉害了,总结得很到位。比如最近项目中涉及到浮点和定点的转换,自己就有点蒙,边看边实验,还算理解了,作文以记之。
一直以来,程序中接触的数据类型都是int整型,char字符型,float单精度浮点型,double双精度浮点型。看到浮点和定点一直不知道如何划分这个概念的范畴。以为浮点就是float表示小数,定点就是int可表示整数而已。经过学习明白了显然是错误的。应该是这样划分的:
浮点:小数点非固定的数,可表示数据范围较广,整数,小数都可表示。包含float,double;
定点:小数点固定,可表示整数,小数。int本质是小数点位于末尾的32位定点数而已;
有了这个认识,后面的讨论就可以开始了。
2. 浮点数的表示法
浮点数以float为例讨论。
2.1 IEEE 754标准
规定浮点数格式为:
s表示符号位,当s=0,V为正数;当s=1,V为负数
M表示尾数,2>M>=1
E表示阶码
将其封装到32位的字中:
根据32位数计算为十进制:
可以得出以下结论:
浮点数表示比整型那些更为复杂。如int中0…01000表示8,0…01001表示9,而浮点不能这样简单。
浮点数不能移位。因为各个位有特殊含义。像int数乘2可以左移1位实现。
2.2 浮点数的“浮”字体现在哪里?
我们说浮点数的小数点不是固定的,是浮动的,那么如何理解?通过例子可直观体验。
这个浮点数表示十进制的1.125
若阶码不变,尾数加1,则表示十进制的1.25
若尾数不变,阶码加1,则表示十进制的2.25
3. 定点数的表示法
对于计算机来说,浮点定点的概念是看不见的,因为它只能看到:0…00001110,至于它表示多少,是逻辑层面的设置。你如果让它是int那就按照int表示法对每个位赋予意义,如果你让它是float就按照float表示法赋予意义。
对于000111000001110000011100表示的定点数:
如果我们设定小数点是位于最后一位的,即00011100.00011100.00011100.则其表示28
若设定小数点位于后三位的,即00011.10000011.10000011.100则其表示3.50
若设定小数点位于后四位的,即0001.11000001.11000001.1100则其表示1.75
可以看到:
小数位数越多,表示的精度越高。若小数点后有n位,则其表示的最大精度为
1/(2n);
整数位数越多,可表示的最大值越大。
以8位为例,最高位为符号位:
若整数位占4位,小数位占3位,则其最大精度为0.125,最大值为15.875
若整数位占5位,小数位占2位,则其最大精度为0.250,最大值为31.750
若整数位占6位,小数位占1位,则其最大精度为0.500,最大值为63.500
若整数位占7位,小数位占0位,则其最大精度为1.000,最大值为127
4. 浮点数 & 定点数
4.1 为何要把浮点数转换为定点数呢?
这来源于项目中神经网络的需求,网络中大量的参数,如果全部用F32表示,一是占用空间大,二是读取效率不高。
如果我们可以将某些浮点数转换为定点数表示,在接受精度损失的前提下,每次就可以读取多个进行运行,可显著提高运算效率。
举例来说,我们用8位定点数,1个符号位,4个整数位,3个小数位,则其可表示范围是-16.00~15.875,最大精度0.125。
有几个浮点数:0.145,1.231,2.364,7.512,每个需要32bit表示。
如果我们将每个量化成一个8位定点数,比如通过某种方法得到:1,10,19,60
此时每个数需要8bit表示。那么读一个浮点数,可以同时读4个定点数,且计算效率可以提高。当然这样做是有风险的:
损失精度,比如再将上述定点数转化为浮点数:0.125,1.250, 2.375,7.500;
定点数表示范围有限,加法有可能会溢出,需要拿int16或int32来暂存中间结果;
4.2 如何将浮点数转换为定点数?
我们用8位定点数,1个符号位,4个整数位,3个小数位。这个3称为量化系数。该过程称为量化。
(我们总是将非离散值量化到离散值空间,处理更为简单)
Int8=float32*2(3)
如:
Int8(10)=float32(1.231)*2(3)
4.3 如何将定点数转换为浮点数?
该过程称为反量化。
Float32=int8/2(3)
如:
Float32(1.250)=int8(10)/2(3)
4.4 note
可以这样理解:量化系数 nnn 决定了我们逻辑上认为01序列中可表示的单位值 1/(2n),CPU读取的数字表示有多少份单位值。
举例来说,对于固定的01序列值:0001,1100
同样的int8数,因为量化系数的不同,代表着不同的f32值。
还有个note:
定点数加减时需要量化系数相同,其值有可能溢出,需要更大定点数来暂存中间值;
两个定点数乘法后如果需要转化为f32,则反量化系数变为2∗n
5. 总结
可以看到:
浮点数和定点数的转换是一种映射。将较为密集的数据空间(F32)映射到较为稀疏的空间(int8);
定点数的小数点实际中是没有的,这只是我们逻辑上的一种设定。01序列是一样的,CPU读取都是相同的,因为我们逻辑上小数点的不同位置,我们认为它代表的值是不同的;
作者:鸟恋旧林XD
原文链接:https://blog.csdn.net/niaolianjiulin/article/details/82764511
最后给大家一个在线的转换工具:
https://www.h-schmidt.net/FloatConverter/IEEE754.html
示例:将浮点数55.12345转换为32bit