[pytorch] 一种加速dataloder的方法

2020-02-25 15:05:57 浏览数 (1)

一位不错的小伙给的代码 (前同事)。

这里实现主要是使用:nvidia.dali

代码如下:

代码语言:javascript复制
from __future__ import division
import torch
import types
import joblib
import collections
import numpy as np
import pandas as pd
from random import shuffle
from nvidia.dali.pipeline import Pipeline
import nvidia.dali.ops as ops
import nvidia.dali.types as types
import nvidia.dali.plugin.pytorch as dalitorch
from nvidia.dali.plugin.pytorch import DALIGenericIterator as PyTorchIterator



def grid2x2(img):
    h, w, c = img.shape
    left_top = img[0:h//2, 0:w//2, :]
    left_bottom = img[h//2:h, 0:w//2, :]
    right_top = img[0:h//2, w//2:w, :]
    right_bottom = img[h//2:h, w//2:w, :]
    return left_top, right_top, left_bottom, left_bottom




class ExternalInputIterator(object):
    def __init__(self, images_dir, txt_path, batch_size, device_id, num_gpus):
        self.images_dir = images_dir
        self.batch_size = batch_size
        with open(txt_path, 'r') as f:
            self.files = [line.rstrip() for line in f if line is not '']
        
        # whole data set size
        self.data_set_len = len(self.files)
        # based on the device_id and total number of GPUs - world size
        # get proper shard
        self.files = self.files[self.data_set_len * device_id // num_gpus:
                                self.data_set_len * (device_id   1) // num_gpus]
        self.n = len(self.files)

    def __iter__(self):
        self.i = 0
        shuffle(self.files)
        return self

    def __next__(self):
        batch = []
        labels = []

        if self.i >= self.n:
            raise StopIteration

        for _ in range(self.batch_size):
            jpeg_filename, label = self.files[self.i].split(',')
            f = open(self.images_dir   jpeg_filename, 'rb')
            # jpeg_filename, label = self.files[self.i], 1
            # f = open(jpeg_filename, 'rb')
            batch.append(np.frombuffer(f.read(), dtype = np.uint8))
            labels.append(np.array([int(label)], dtype = np.uint8))
            self.i = (self.i   1) % self.n
        return (batch, labels)

    @property
    def size(self,):
        return self.data_set_len

    next = __next__


class ExternalSourcePipeline(Pipeline):
    def __init__(self, resize, batch_size, num_threads, device_id, external_data):
        super(ExternalSourcePipeline, self).__init__(batch_size,
                                      num_threads,
                                      device_id,
                                      seed=12,
                                      exec_async=False,
                                      exec_pipelined=False,
                                    )
        self.input = ops.ExternalSource()
        self.input_label = ops.ExternalSource()
        self.decode = ops.ImageDecoder(device = "cpu", output_type = types.RGB)
        # PythonFunction: exec_async and exec_pipelined need to be False, and input must cpu
        self.grid = ops.PythonFunction(function=grid2x2, num_outputs=4)
        # self.grid = dalitorch.TorchPythonFunction(function=grid2x2, num_outputs=5)
        self.resize = ops.Resize(device="gpu", 
                                 resize_x=resize, 
                                 resize_y=resize,
                                 interp_type=types.INTERP_LINEAR)
        # self.cast = ops.Cast(device = "gpu",
        #                      dtype = types.UINT8)
        self.external_data = external_data
        self.iterator = iter(self.external_data)



    def define_graph(self):
        self.jpegs = self.input()
        self.labels = self.input_label()
        images = self.decode(self.jpegs)
        
        images1, images2, images3, images4 = self.grid(images)
        images = self.resize(images.gpu())
        images1 = self.resize(images1.gpu())
        images2 = self.resize(images2.gpu())
        images3 = self.resize(images3.gpu())
        images4 = self.resize(images4.gpu())
        return (images, images1, images2, images3, images4, self.labels)

    def iter_setup(self):
        try:
            images, labels = self.iterator.next()
            self.feed_input(self.jpegs, images)
            self.feed_input(self.labels, labels)
        except StopIteration:
            self.iterator = iter(self.external_data)
            raise StopIteration


def create_dataloder(img_dir, 
                     txt_path, 
                     resize,
                     batch_size,
                     device_id=0,
                     num_gpus=1,
                     num_threads=6):
    eii = ExternalInputIterator(img_dir,
                                txt_path, 
                                batch_size=batch_size, 
                                device_id=device_id,
                                num_gpus=num_gpus)
    pipe = ExternalSourcePipeline(resize=resize,
                                  batch_size=batch_size, 
                                  num_threads=num_threads, 
                                  device_id = 0,
                                  external_data = eii)

    pii = PyTorchIterator(pipe, 
                          output_map=["data0", "data1", "data2", "data3", "data4", "label"], 
                          size=eii.size, 
                          last_batch_padded=True, 
                          fill_last_batch=False)

    return pii


if __name__ == '__main__':
    batch_size = 32
    num_gpus = 1
    num_threads = 8
    epochs = 1

    pii = create_dataloder('/home/hanbing/hanbing_data/datasets/deepfake/train_videos/',
                            resize=224,
                            batch_size=batch_size,
                            txt_path='./txt/train_5.txt',
                            )


    for e in range(epochs):
        print('tttt', len(pii))
        for i, data in enumerate(pii):
            imgs = data[0]["data4"]
            labels = data[0]["label"]
            print("epoch: {}, iter {}".format(e, i), imgs.shape, labels.shape)

        pii.reset()

0 人点赞