对比Excel,学习pandas数据透视表

2020-02-25 15:51:57 浏览数 (1)

Excel中做数据透视表

① 选中整个数据源;

② 依次点击“插入”—“数据透视表”

③ 选择在Excel中的哪个位置,插入数据透视表

④ 然后根据实际需求,从不同维度展示结果

⑤ 结果如下

pandas用pivot_table()做数据透视表

1)语法格式

代码语言:javascript复制
pd.pivot_table(data,index=None,columns=None,
               values=None,aggfunc='mean',
               margins=False,margins_name='All',
               dropna=True,fill_value=None)

2)对比excel,说明上述参数的具体含义

参数说明:

  • data 相当于Excel中的"选中数据源";
  • index 相当于上述"数据透视表字段"中的行;
  • columns 相当于上述"数据透视表字段"中的列;
  • values 相当于上述"数据透视表字段"中的值;
  • aggfunc 相当于上述"结果"中的计算类型;
  • margins 相当于上述"结果"中的总计;
  • margins_name 相当于修改"总计"名,为其它名称;

下面几个参数,用的较少,记住干嘛的,等以后需要就百度。

  • dropna 表示是否删除缺失值,如果为True时,则把一整行全作为缺失值删除;
  • fill_value 表示将缺失值,用某个指定值填充。

案例说明

1)求出不同品牌下,每个月份的销售数量之和

① 在Excel中的操作结果如下

② 在pandas中的操作如下

代码语言:javascript复制
df = pd.read_excel(r"C:Users黄伟Desktoppivot_table.xlsx")
display(df.sample(5))

df.insert(1,"月份",df["销售日期"].apply(lambda x:x.month))
display(df.sample(5))

df1 = pd.pivot_table(df,index="品牌",columns="月份",
                     values="销售数量",aggfunc=np.sum)
display(df1)

结果如下:

2)求出不同品牌下,每个地区、每个月份的销售数量之和

① 在Excel中的操作结果如下

② 在pandas中的操作如下

代码语言:javascript复制
df = pd.read_excel(r"C:Users黄伟Desktoppivot_table.xlsx")
display(df.sample(5))

df.insert(1,"月份",df["销售日期"].apply(lambda x:x.month))
display(df.sample(5))

df1 = pd.pivot_table(df,index="品牌",columns=["销售区域","月份"],
                     values="销售数量",aggfunc=np.sum)
display(df1)

结果如下:

3)求出不同品牌不同地区下,每个月份的销售数量之和

① 在Excel中的操作结果如下

② 在pandas中的操作如下

代码语言:javascript复制
df = pd.read_excel(r"C:Users黄伟Desktoppivot_table.xlsx")
display(df.sample(5))

df.insert(1,"月份",df["销售日期"].apply(lambda x:x.month))
display(df.sample(5))

df1 = pd.pivot_table(df,index=["品牌","销售区域"],columns="月份",
                     values="销售数量",aggfunc=np.sum)
display(df1)

结果如下:

4)求出不同品牌下的“销售数量之和”与“货号计数”

① 在Excel中的操作结果如下

② 在pandas中的操作如下

代码语言:javascript复制
df = pd.read_excel(r"C:Users黄伟Desktoppivot_table.xlsx")
display(df.sample(5))

df.insert(1,"月份",df["销售日期"].apply(lambda x:x.month))
display(df.sample(5))

df1 = pd.pivot_table(df,index="品牌",columns="月份",
                     values=["销售数量","货号"],
                     aggfunc={"销售数量":"sum","货号":"count"},
                     margins=True,margins_name="总计")
display(df1)

结果如下:

0 人点赞