kaggle案例重复:科比的投篮选择之二

2020-03-03 14:30:23 浏览数 (1)

今天继续重复kaggle案例:科比的投篮选择。原文地址https://www.kaggle.com/xvivancos/kobe-bryant-shot-selection/report

读入数据、加载需要用到的包
代码语言:javascript复制
setwd("../Desktop/Data_analysis_practice/Kaggle/Kobe_shot_selection/")
shots<-read.csv("data.csv")
dim(shots)
shots<-na.omit(shots)
dim(shots)
library(ggplot2)
library(tidyverse)
library(gridExtra)
不同进攻方式的投篮命中率

这里用到 group_by()summarise()函数。一个简单的小例子理解这两个函数的用法

代码语言:javascript复制
df<-data.frame(First=c("A","A","A","B","B","B"),
               Second=c(1,2,1,4,5,6))
df%>%
  group_by(First)%>%
  summarise(Accuracy=mean(Second),
            counts=n())

# A tibble: 2 x 3
  First Accuracy counts
  <fct>    <dbl>  <int>
1 A         1.33      3
2 B         5.00      3
代码语言:javascript复制
shots%>%
  group_by(action_type)%>%
  summarise(Accuracy=mean(shot_made_flag),counts=n())%>%
  filter(counts>20)%>%
  ggplot(aes(x=reorder(action_type,Accuracy),y=Accuracy)) 
  geom_point(aes(colour=Accuracy),size=3) 
  scale_colour_gradient(low="orangered",high="chartreuse3") 
  labs(title="Accurancy by shot type") theme_bw() 
  theme(axis.title.y=element_blank(),
        legend.position="none",
        plot.title=element_text(hjust=0.5)) 
  coord_flip()

这里又涉及一个小知识点:从小到大排序使用 reorder()函数。小例子:

代码语言:javascript复制
df<-data.frame(First=LETTERS[1:5],
               Second=c(1,4,5,3,2))
p1<-ggplot(df,aes(x=First,y=Second)) 
  geom_bar(stat="identity",fill="darkgreen")
p2<-ggplot(df,aes(x=reorder(First,Second),y=Second)) 
  geom_bar(stat="identity",fill="orange")

ggpubr::ggarrange(p1,p2,ncol=1,nrow=2,labels=c("p1","p2"))

那么从大到小排序呢?暂时想到一种解决办法:

代码语言:javascript复制
df1<-df[order(df$Second,decreasing=T),]
df1$First<-fct_inorder(df1$First)
ggplot(df1,aes(x=First,y=Second)) 
  geom_bar(stat="identity",fill="orangered")
每个赛季的命中率
代码语言:javascript复制
shots%>%
  group_by(season)%>%
  summarise(Accuracy=mean(shot_made_flag))%>%
  ggplot(aes(x=season,y=Accuracy,group=1)) 
  geom_line(aes(colour=Accuracy)) 
  geom_point(aes(colour=Accuracy),size=3) 
  scale_colour_gradient(low="orangered",high="chartreuse3") 
  labs(title="Accuracy by season",x="Season") theme_bw() 
  theme(legend.position="none",
        plot.title=element_text(hjust=0.5),
        axis.text.x=element_text(angle=45,hjust=1))

由上图可以看出最后三个赛季科比的命中率断崖式下跌。原文作者的话:As we see, the accuracy begins to decrease badly from the 2013-14 season. Why didn't you retire before, Kobe?

常规赛季后赛命中率对比
代码语言:javascript复制
shots%>%
  group_by(season)%>%
  summarise(Playoff=mean(shot_made_flag[playoffs==1]),
            RegularSeason=mean(shot_made_flag[playoffs==0]))%>%
  ggplot(aes(x=season,group=1)) 
  geom_line(aes(y=Playoff,color="Playoff")) 
  geom_line(aes(y=RegularSeason,colour="RegularSeason")) 
  geom_point(aes(y=Playoff,color="Playoff"),size=3) 
  geom_point(aes(y=RegularSeason,color="RegularSeason")) 
  labs(title="Accuracy by season",
       subtitle="Playoff and Regular Season",
       x="Season",y="Accuracy") theme_bw() 
  theme(legend.title=element_blank(),
        plot.title=element_text(hjust=0.5),
        plot.subtitle=element_text(hjust=0.5),
        axis.text.x=element_text(angle=45,hjust=1))
两分球和三分球命中率
代码语言:javascript复制
shots %>%
  group_by(season) %>%
  summarise(TwoPoint=mean(shot_made_flag[shot_type=="2PT Field Goal"]),
            ThreePoint=mean(shot_made_flag[shot_type=="3PT Field Goal"])) %>%
  ggplot(aes(x=season, group=1))  
  geom_line(aes(y=TwoPoint, colour="TwoPoint"))  
  geom_line(aes(y=ThreePoint, colour="ThreePoint"))  
  geom_point(aes(y=TwoPoint, colour="TwoPoint"), size=3)  
  geom_point(aes(y=ThreePoint, colour="ThreePoint"), size=3)  
  labs(title="Accuracy by season", 
       subtitle="2PT Field Goal and 3PT Field Goal",
       x="Season", y="Accuracy")  
  theme_bw()  
  theme(legend.title=element_blank(),
        plot.title=element_text(hjust=0.5),
        plot.subtitle=element_text(hjust=0.5),
        axis.text.x=element_text(angle=45, hjust=1))

从上图看到2013-2014赛季科比的3分命中率极低。哪位忠实的球迷还能想起来2013-2014赛季的科比是什么情况吗?

不同的对手两分球三分球命中率
代码语言:javascript复制
shots %>%
  group_by(opponent) %>%
  summarise(TwoPoint=mean(shot_made_flag[shot_type=="2PT Field Goal"]),
            ThreePoint=mean(shot_made_flag[shot_type=="3PT Field Goal"])) %>%
  ggplot(aes(x=opponent, group=1))  
  geom_line(aes(y=TwoPoint, colour="TwoPoint"))  
  geom_line(aes(y=ThreePoint, colour="ThreePoint"))  
  geom_point(aes(y=TwoPoint, colour="TwoPoint"), size=3)  
  geom_point(aes(y=ThreePoint, colour="ThreePoint"), size=3)  
  labs(title="Accuracy by opponent", 
       subtitle="2PT Field Goal and 3PT Field Goal",
       x="Opponent", y="Accuracy")  
  theme_bw()  
  theme(legend.title=element_blank(),
        plot.title=element_text(hjust=0.5),
        plot.subtitle=element_text(hjust=0.5),
        axis.text.x=element_text(angle=45, hjust=1))
不同出手距离投篮命中率
代码语言:javascript复制
shots %>%
  group_by(shot_distance) %>%
  summarise(Accuracy=mean(shot_made_flag)) %>%
  ggplot(aes(x=shot_distance, y=Accuracy))   
  geom_line(aes(colour=Accuracy))  
  geom_point(aes(colour=Accuracy), size=2)  
  scale_colour_gradient(low="orangered", high="chartreuse3")  
  labs(title="Accuracy by shot distance", x="Shot distance (ft.)")  
  xlim(c(0,45))  
  theme_bw()  
  theme(legend.position="none",
        plot.title=element_text(hjust=0.5))
不同区域的投篮命中率
代码语言:javascript复制
p7 <- shots %>%
  select(lat, lon, shot_zone_range, shot_made_flag) %>%
  group_by(shot_zone_range) %>%
  mutate(Accuracy=mean(shot_made_flag)) %>%
  ggplot(aes(x=lon, y=lat))  
  geom_point(aes(colour=Accuracy))  
  scale_colour_gradient(low="red", high="lightgreen")  
  labs(title="Accuracy by shot zone range")  
  ylim(c(33.7, 34.0883))  
  theme_void()  
  theme(plot.title=element_text(hjust=0.5)
p8 <- shots %>%
  select(lat, lon, shot_zone_area, shot_made_flag) %>%
  group_by(shot_zone_area) %>%
  mutate(Accuracy=mean(shot_made_flag)) %>%
  ggplot(aes(x=lon, y=lat))  
  geom_point(aes(colour=Accuracy))  
  scale_colour_gradient(low="red", high="lightgreen")  
  labs(title="Accuracy by shot zone area")  
  ylim(c(33.7, 34.0883))  
  theme_void()  
  theme(legend.position="none",
        plot.title=element_text(hjust=0.5))
p9 <- shots %>%
  select(lat, lon, shot_zone_basic, shot_made_flag) %>%
  group_by(shot_zone_basic) %>%
  mutate(Accuracy=mean(shot_made_flag)) %>%
  ggplot(aes(x=lon, y=lat))  
  geom_point(aes(colour=Accuracy))  
  scale_colour_gradient(low="red", high="lightgreen")  
  labs(title="Accuracy by shot zone basic")  
  ylim(c(33.7, 34.0883))  
  theme_void()  
  theme(legend.position="none",
        plot.title=element_text(hjust=0.5))
grid.arrange(p7, p8, p9, layout_matrix=cbind(c(1,2), c(1,3)))

0 人点赞