转发请注明原创地址:https://cloud.tencent.com/developer/article/1594317
flink任务的deploy形式有很多种选择,常见的有standalone,on yarn , Meos , Kubernetes等方式,目前公司内部统一采用flink on yarn的 single job模式(每个flink job 单独在yarn上声明一个flink集群),本文分析的是flink1.5.1版本源码使用legacy 模式提交yarn single job到yarn集群的部分源码。
典型的flink提交single job命令格式如下: ./flink run -m yarn-cluster -d -yst -yqu flinkqu -yst -yn 4 -ys 2 -c flinkdemoclass flinkdemo.jar args1 args2 ...
flink脚本的入口类为org.apache.flink.client.cli.CliFrontend
在CliFrontend的main函数中首先通过loadCustomCommandLines方法加载了提交yarn任务初始化一个重要工具类
代码语言:javascript复制org.apache.flink.yarn.cli.FlinkYarnSessionCli
代码语言:javascript复制 public static List<CustomCommandLine<?>> loadCustomCommandLines(Configuration configuration, String configurationDirectory) {
List<CustomCommandLine<?>> customCommandLines = new ArrayList<>(2);
// Command line interface of the YARN session, with a special initialization here
// to prefix all options with y/yarn.
// Tips: DefaultCLI must be added at last, because getActiveCustomCommandLine(..) will get the
// active CustomCommandLine in order and DefaultCLI isActive always return true.
final String flinkYarnSessionCLI = "org.apache.flink.yarn.cli.FlinkYarnSessionCli";
try {
customCommandLines.add(
loadCustomCommandLine(flinkYarnSessionCLI,
configuration,
configurationDirectory,
"y",
"yarn"));
} catch (NoClassDefFoundError | Exception e) {
LOG.warn("Could not load CLI class {}.", flinkYarnSessionCLI, e);
}
if (configuration.getString(CoreOptions.MODE).equalsIgnoreCase(CoreOptions.NEW_MODE)) {
customCommandLines.add(new DefaultCLI(configuration));
} else {
customCommandLines.add(new LegacyCLI(configuration));
}
return customCommandLines;
}
根据启动参数,CliFrontend开始运行方法run()->runProgram(),runProgram内部与yarn相关的一个重点方法为
代码语言:javascript复制client = clusterDescriptor.deploySessionCluster(clusterSpecification);
上文中的clusterDescriptor就是前面的FlinkYarnSessionCli执行createClusterDescriptor()方法后产生的集群属性描述对象,在本模式中对应的具体类是org.apache.flink.yarn.LegacyYarnClusterDescriptor,父类为AbstractYarnClusterDescriptor
deploySessionCluster内部进一步调用deployInternal来向yarn集群提交一个flink集群。
代码语言:javascript复制protected ClusterClient<ApplicationId> deployInternal(
ClusterSpecification clusterSpecification,
String applicationName,
String yarnClusterEntrypoint,
@Nullable JobGraph jobGraph,
boolean detached) throws Exception {
// ------------------ Check if configuration is valid --------------------
validateClusterSpecification(clusterSpecification);
if (UserGroupInformation.isSecurityEnabled()) {
// note: UGI::hasKerberosCredentials inaccurately reports false
// for logins based on a keytab (fixed in Hadoop 2.6.1, see HADOOP-10786),
// so we check only in ticket cache scenario.
boolean useTicketCache = flinkConfiguration.getBoolean(SecurityOptions.KERBEROS_LOGIN_USETICKETCACHE);
UserGroupInformation loginUser = UserGroupInformation.getCurrentUser();
if (loginUser.getAuthenticationMethod() == UserGroupInformation.AuthenticationMethod.KERBEROS
&& useTicketCache && !loginUser.hasKerberosCredentials()) {
LOG.error("Hadoop security with Kerberos is enabled but the login user does not have Kerberos credentials");
throw new RuntimeException("Hadoop security with Kerberos is enabled but the login user "
"does not have Kerberos credentials");
}
}
isReadyForDeployment(clusterSpecification);
// ------------------ Check if the specified queue exists --------------------
checkYarnQueues(yarnClient);
// ------------------ Add dynamic properties to local flinkConfiguraton ------
Map<String, String> dynProperties = getDynamicProperties(dynamicPropertiesEncoded);
for (Map.Entry<String, String> dynProperty : dynProperties.entrySet()) {
flinkConfiguration.setString(dynProperty.getKey(), dynProperty.getValue());
}
// ------------------ Check if the YARN ClusterClient has the requested resources --------------
// Create application via yarnClient
final YarnClientApplication yarnApplication = yarnClient.createApplication();
final GetNewApplicationResponse appResponse = yarnApplication.getNewApplicationResponse();
Resource maxRes = appResponse.getMaximumResourceCapability();
final ClusterResourceDescription freeClusterMem;
try {
freeClusterMem = getCurrentFreeClusterResources(yarnClient);
} catch (YarnException | IOException e) {
failSessionDuringDeployment(yarnClient, yarnApplication);
throw new YarnDeploymentException("Could not retrieve information about free cluster resources.", e);
}
final int yarnMinAllocationMB = yarnConfiguration.getInt(yarnConfiguration.RM_SCHEDULER_MINIMUM_ALLOCATION_MB, 0);
final ClusterSpecification validClusterSpecification;
try {
validClusterSpecification = validateClusterResources(
clusterSpecification,
yarnMinAllocationMB,
maxRes,
freeClusterMem);
} catch (YarnDeploymentException yde) {
failSessionDuringDeployment(yarnClient, yarnApplication);
throw yde;
}
LOG.info("Cluster specification: {}", validClusterSpecification);
final ClusterEntrypoint.ExecutionMode executionMode = detached ?
ClusterEntrypoint.ExecutionMode.DETACHED
: ClusterEntrypoint.ExecutionMode.NORMAL;
flinkConfiguration.setString(ClusterEntrypoint.EXECUTION_MODE, executionMode.toString());
ApplicationReport report = startAppMaster(
flinkConfiguration,
applicationName,
yarnClusterEntrypoint,
jobGraph,
yarnClient,
yarnApplication,
clusterSpecification);
String host = report.getHost();
int port = report.getRpcPort();
// Correctly initialize the Flink config
flinkConfiguration.setString(JobManagerOptions.ADDRESS, host);
flinkConfiguration.setInteger(JobManagerOptions.PORT, port);
flinkConfiguration.setString(RestOptions.ADDRESS, host);
flinkConfiguration.setInteger(RestOptions.PORT, port);
// the Flink cluster is deployed in YARN. Represent cluster
return createYarnClusterClient(
this,
clusterSpecification.getNumberTaskManagers(),
clusterSpecification.getSlotsPerTaskManager(),
report,
flinkConfiguration,
true);
}
deployInternal方法开头对yarn集群的可用内存,queue等进行检查后申请了一个application,并调用startAppMaster声明了AM的启动类:YarnApplicationMasterRunner
代码语言:javascript复制public ApplicationReport startAppMaster(
Configuration configuration,
String applicationName,
String yarnClusterEntrypoint,
JobGraph jobGraph,
YarnClient yarnClient,
YarnClientApplication yarnApplication,
ClusterSpecification clusterSpecification) throws Exception {
.....
setApplicationTags(appContext);
// add a hook to clean up in case deployment fails
Thread deploymentFailureHook = new DeploymentFailureHook(yarnClient, yarnApplication, yarnFilesDir);
Runtime.getRuntime().addShutdownHook(deploymentFailureHook);
LOG.info("Submitting application master " appId);
yarnClient.submitApplication(appContext);
LOG.info("Waiting for the cluster to be allocated");
final long startTime = System.currentTimeMillis();
ApplicationReport report;
}
YarnApplicationMasterRunner会在yarn集群上作为appmaster与resourcemanager通信申请对应的Taskmanagercontainer服务,启动jobmanager服务和webui服务等
代码语言:javascript复制 protected int runApplicationMaster(Configuration config) {
......
......
webMonitor = BootstrapTools.startWebMonitorIfConfigured(
config,
highAvailabilityServices,
new AkkaJobManagerRetriever(actorSystem, webMonitorTimeout, 10, Time.milliseconds(50L)),
new AkkaQueryServiceRetriever(actorSystem, webMonitorTimeout),
webMonitorTimeout,
new ScheduledExecutorServiceAdapter(futureExecutor),
LOG);
metricRegistry = new MetricRegistryImpl(
MetricRegistryConfiguration.fromConfiguration(config));
metricRegistry.startQueryService(actorSystem, null);
// 2: the JobManager
LOG.debug("Starting JobManager actor");
// we start the JobManager with its standard name
ActorRef jobManager = JobManager.startJobManagerActors(
config,
actorSystem,
futureExecutor,
ioExecutor,
highAvailabilityServices,
metricRegistry,
webMonitor == null ? Option.empty() : Option.apply(webMonitor.getRestAddress()),
new Some<>(JobMaster.JOB_MANAGER_NAME),
Option.<String>empty(),
getJobManagerClass(),
getArchivistClass())._1();
final String webMonitorURL = webMonitor == null ? null : webMonitor.getRestAddress();
// 3: Flink's Yarn ResourceManager
LOG.debug("Starting YARN Flink Resource Manager");
Props resourceMasterProps = YarnFlinkResourceManager.createActorProps(
getResourceManagerClass(),
config,
yarnConfig,
highAvailabilityServices.getJobManagerLeaderRetriever(HighAvailabilityServices.DEFAULT_JOB_ID),
appMasterHostname,
webMonitorURL,
taskManagerParameters,
taskManagerContext,
numInitialTaskManagers,
LOG);
ActorRef resourceMaster = actorSystem.actorOf(resourceMasterProps);
另一方面,flink客户端在提交完集群后从runprogram()方法进入executeProgram();
代码语言:javascript复制 protected void executeProgram(PackagedProgram program, ClusterClient<?> client, int parallelism) throws ProgramMissingJobException, ProgramInvocationException {
logAndSysout("Starting execution of program");
final JobSubmissionResult result = client.run(program, parallelism);
if (null == result) {
throw new ProgramMissingJobException("No JobSubmissionResult returned, please make sure you called "
"ExecutionEnvironment.execute()");
}
if (result.isJobExecutionResult()) {
logAndSysout("Program execution finished");
JobExecutionResult execResult = result.getJobExecutionResult();
System.out.println("Job with JobID " execResult.getJobID() " has finished.");
System.out.println("Job Runtime: " execResult.getNetRuntime() " ms");
Map<String, Object> accumulatorsResult = execResult.getAllAccumulatorResults();
if (accumulatorsResult.size() > 0) {
System.out.println("Accumulator Results: ");
System.out.println(AccumulatorHelper.getResultsFormatted(accumulatorsResult));
}
} else {
logAndSysout("Job has been submitted with JobID " result.getJobID());
}
}
代码从ClusterClient.run()->prog.invokeInteractiveModeForExecution()开始真正进入用户flink job的main方法。
main方法中,代码最后的env.execute() 会把生成job的执行plan并返回对应的DetachedEnvironment对象。
方法调用链路为DetachedEnvironment.finalizeExecute()->ClusterClient.run()->YarnClusterClient.submitJob->ClusterClient.runDetached();
代码语言:javascript复制 /**
* Submits a JobGraph detached.
* @param jobGraph The JobGraph
* @param classLoader User code class loader to deserialize the results and errors (may contain custom classes).
* @return JobSubmissionResult
* @throws ProgramInvocationException
*/
public JobSubmissionResult runDetached(JobGraph jobGraph, ClassLoader classLoader) throws ProgramInvocationException {
waitForClusterToBeReady();
final ActorGateway jobManagerGateway;
try {
jobManagerGateway = getJobManagerGateway();
} catch (Exception e) {
throw new ProgramInvocationException("Failed to retrieve the JobManager gateway.", e);
}
try {
logAndSysout("Submitting Job with JobID: " jobGraph.getJobID() ". Returning after job submission.");
JobClient.submitJobDetached(
new AkkaJobManagerGateway(jobManagerGateway),
flinkConfig,
jobGraph,
Time.milliseconds(timeout.toMillis()),
classLoader);
return new JobSubmissionResult(jobGraph.getJobID());
} catch (JobExecutionException e) {
throw new ProgramInvocationException("The program execution failed: " e.getMessage(), e);
}
}
代码语言:javascript复制 @Override
public JobSubmissionResult submitJob(JobGraph jobGraph, ClassLoader classLoader) throws ProgramInvocationException {
if (isDetached()) {
if (newlyCreatedCluster) {
stopAfterJob(jobGraph.getJobID());
}
LOG.info("super.runDetached");
return super.runDetached(jobGraph, classLoader);
} else {
LOG.info("super.run");
return super.run(jobGraph, classLoader);
}
}
最后,客户端连接到前文对应的jobmanager服务并把flink job grafaph提交给yarn上已经申请好的flink集群。
结论:flink on yarn的single job模式提交作业的逻辑为flink客户端首先申请一个yarn集群的application,等待集群成功部署后再联系jobmanager并把job提交到集群上面。这个模式的优点是每个
flink job有一个独立的集群便于资源规划和管理,缺点是经过验证在am挂掉后yarn只能把原来的集群重启回来但是无法恢复flink jobgraph的行为,所以需要额外配置ha信息。